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ABSTRACT 

The recent momentum in energy research has simplified converting solar to electrical 

energy through photoelectrochemical (PEC) cells. There are numerous benefits to these PEC cells, 

such as the inexpensive fabrication of thin film, reduction in absorption loss (due to transparent 

electrolyte), and a substantial increase in the energy conversion efficiency. Alpha-hematite (-

Fe2O3) has received considerable attention as a photoanode for water-splitting applications in 

photoelectrochemical (PEC) devices. The alpha-hematite (-Fe2O3) nanomaterial is attractive due 

to its bandgap of 2.1eV allowing it to absorb visible light. Other benefits of -Fe2O3 include low 

cost, chemical stability and availability in nature, and excellent photoelectrochemical (PEC) 

properties to split water into hydrogen and oxygen. However, -Fe2O3 suffers from low 

conductivity, slow surface kinetics, and low carrier diffusion that causes degradation of PEC 

device performance. The low carrier diffusion of -hematite is related to higher resistivity, slow 

surface kinetics, low electron mobility, and higher electro-hole combinations. All the drawbacks 

of -Fe2O3, such as low carrier mobility and electronic diffusion properties, can be enhanced by 

doping, which forms the nanocomposite and nanostructure films.  

In this study, all nanomaterials were synthesized utilizing the sol-gel technique and 

investigated using Scanning Electron Microscopy (SEM), X-ray Diffractometer (XRD), UV-

Visible Spectrophotometer (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), Raman 

techniques, Particle Analyzer, Cyclic Voltammetry (CV), and Chronoamperometry, respectively. 

The surface morphology is studied by SEM. X-Ray diffractometer (XRD) is used to identify the 

crystalline phase and to estimate the crystalline size. FTIR is used to identify the chemical bonds 
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as well as functional groups in the compound. A UV-Vis absorption spectral study may assist in 

understanding electronic structure of the optical band gap of the material. Cyclic voltammetry and 

chronoamperometry were used to estimate the diffusion coefficient and study electrochemical 

activities at the electrode/electrolyte interface. 

In this investigation, the -Fe2O3 was doped with various materials such as metal oxide 

(aluminum, Al), dichalcogenide (molybdenum disulfide, MoS2), and co-catalyst (titanium dioxide, 

TiO2). By doping or composite formation with different percentage ratios (0.5, 10, 20, 30) of 

aluminum (Al) containing -Fe2O3, the mobility and carrier diffusion properties of -hematite (-

Fe2O3) can be enhanced. The new composite, Al--Fe2O3, improved charge transport properties 

through strain introduction in the lattice structure, thus increasing light absorption. The increase 

of Al contents in -Fe2O3 shows clustering due to the denser formation of the Al--Fe2O3 particle. 

The presence of aluminum causes the change in structural and optical and morphological 

properties of Al--Fe2O3 more than the properties of the -Fe2O3 photocatalyst. There is a marked 

variation in the bandgap from 2.1 to 2.4 eV. The structure of the composite formation Al--Fe2O3, 

due to a high percentage of Al, shows a rhombohedra structure. The photocurrent (35 A/cm2) 

clearly distinguishes the enhanced hydrogen production of the Al--Fe2O3 based photocatalyst. 

This work has been conducted with several percentages (0.1, 0.2, 0.5, 1, 2, 5) of 

molybdenum disulfide (MoS2) that has shown enhanced photocatalytic activity due to its bonding, 

chemical composition, and nanoparticle growth on the graphene films. The MoS2 material has a 

bandgap of 1.8 eV that works in visible light, responding as a photocatalyst. The photocurrent and 

electrode/electrolyte interface of MoS2--Fe2O3 nanocomposite films were investigated using 

electrochemical techniques. The MoS2 material could help to play a central role in charge transfer 

with its slow recombination of electron-hole pairs created due to photo-energy with the charge 
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transfer rate between surface and electrons. The bandgap of the MoS2 doped -Fe2O3 

nanocomposite has been estimated to be vary from 1.94 to 2.17 eV. The nanocomposite MoS2--

Fe2O3 films confirmed to be rhombohedral structure with a lower band gap than Al--Fe2O3 

nanomaterial. The nanocomposite MoS2--Fe2O3 films revealed a more enhanced photocurrent 

(180 A/cm2) than pristine -Fe2O3 and other transition metal doped Al--Fe2O3 nanostructured 

films. 

The p-n configuration has been used because MoS2 can remove the holes from the n-type 

semiconductor by making a p-n configuration. The photoelectrochemical properties of the p-n 

configuration of MoS2-α-Fe2O3 as the n-type and ND-RRPHTh as the p-type deposited on both n-

type silicon and FTO-coated glass plates. The p-n photoelectrochemical cell is stable and allows 

for eliminating the photo-corrosion process. Nanomaterial-based electrodes -Fe2O3-MoS2 and 

ND-RRPHTh have shown an improved hydrogen release compared to -Fe2O3, Al--Fe2O3 and 

MoS2--Fe2O3 nanostructured films in PEC cells. By using p-n configuration, the 

chronoamperometry results showed that 1% MoS2 in MoS2--Fe2O3 nanocomposite can be a 

suitable structure to obtain a higher photocurrent density. The photoelectrochemical properties of 

the p-n configuration of MoS2-α-Fe2O3 as n-type and ND-RRPHTh as p-type resulted 3-4 times 

higher (450 A/cm2) in current density and energy conversion efficiencies than parent electrode 

materials in an electrolyte of 1M of NaOH in PEC cells. 

Titanium dioxide (TiO2) is known as one of the most explored electrode materials due to 

its physical and chemical stability in aqueous materials and its non-toxicity. TiO2 has been 

investigated because of the low cost for the fabrication of photoelectrochemical stability. 

Incorporation of various percentages (2.5, 5, 16, 25, 50) of TiO2 in -Fe2O3 could achieve better 

efficiencies as the photoanode by enhancing the electron concentration and low combination rate. 
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Both materials (-Fe2O3, TiO2) can have a wide range of wavelength which could absorb light in 

both UV and visible spectrum ranges. TiO2 doped with -Fe2O3 film was shown as increasing 

contacting area with the electrolyte, reducing e-h recombination and shift light absorption along 

with visible region. The -Fe2O3-TiO2 nanomaterial has shown a more enhanced photocurrent 

(800 A/cm2) compared to metal doped -Fe2O3 photoelectrochemical devices. 
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CHAPTER 1: INTRODUCTION 

1.1 Problem Description and Motivation 

Today, worldwide, the search is on-going for alternative energy sources and inventive ways 

to generate renewable energy with much greater efficiency using free resources of the sun and 

water. Photomaterials have been studied in many experiments for splitting water into hydrogen 

and oxygen. -Fe2O3 material is one of the most suitable photomaterials to be used as a 

photoelectrode in photoelectrochemical cells. The -Fe2O3 is an excellent photomaterial due to 

ease in synthesis, abundance in nature, low cost, and favorable bandgap (∼2.1 eV) that can absorb 

visible light (42% of sun radiations). This renewable solar energy can be explored to produce 

powerful hydrogen energy by splitting water using photocatalytic material (-Fe2O3).  

The performance of alpha-hematite as photomaterial has been limited by low conductivity, 

the short electron-hole pair time (<10 ps), and hole diffusion length (2-4 nm), which cause high 

recombination rates of photo-generated carriers in the bulk. Hematite-based water splitting has 

lower efficiency than that of the theoretical (12.6 mA/cm2) and has restricted PEC applications. 

Recent studies have identified that the doping process can enhance the morphology, structure, and 

shape of the materials. The electronic properties of -Fe2O3 can be improved by doping with 

different materials such as metal oxide (Al), dichalcogenide material (MoS2), and co-catalyst 

material (TiO2). Aluminum--Fe2O3 nanocomposite has changed the bandgap to vary from 2.1 to 

2.4 eV and there is a marked increase in the photocurrent. MoS2--Fe2O3 nanocomposite has a 

new morphology that resembles a blooming flower due to the presence of MoS2. The p-n 

configuration can improve the surface contact, which can produce more photocurrent. TiO2 has 
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been used as a photocatalyst since 1970 and it is a photomaterial with bandgap 3.1 eV that can 

absorb ultraviolet radiation. TiO2--Fe2O3 nanocomposite enhances the photocurrent by absorbing 

both visible light and ultraviolet radiation.   

The objectives of this dissertation are to improve/ enhance alpha-hematite material 

properties by: 

 doping with transition metal materials such as aluminum (Al). 

 doping with dichalcogenide materials such as molybdenum disulfide (MoS2). 

 using p-n configuration MoS2-α-Fe2O3 as n-type and polyhexylthiophene (RRPHTh) - 

nanodiamond (ND) as p-type 

 doping with a co-catalyst such as titanium dioxide (TiO2)  

 using p-n configuration TiO2-α-Fe2O3 as n-type and polyhexylthiophene (RRPHTh)-

nanodiamond (ND) as p-type 

1.2 Organization of The Dissertation  

The outline of this dissertation can be summarized as follows. 

Chapter 1 explains the problem and the motivation for this dissertation synthesis and 

characterization of alpha-hematite material for water-splitting applications. This chapter also 

provides the overall organization of the dissertation and objectives. 

Chapter 2 is a literature review that discusses alpha-hematite material for water-splitting 

applications using photoelectrochemical cells. It also describes methods of hydrogen production 

and ways to produce hydrogen using photoelectrochemical cells (PEC). This Mechanism of 

Photoelectrochemical Cells (PEC) was described in detail about the free electrons that can be 

generated by exposing light on the material. This chapter also provides a brief overview of 
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applications of proposed materials such as sensing, photovoltaic cells, fuel cells, water 

purification, lithium batteries, and supercapacitors. 

Chapter 3 describes how aluminum--hematite thin films can enhance alpha-hematite for 

photoelectrochemical applications. This chapter introduces the importance of alpha-hematite for 

water-splitting applications and also how Al doping can increase the conductivity of alpha-

hematite. This chapter also provides the synthesis process of the proposed materials by using sol-

gel technique in detail. Fabricated nanomaterials were characterized to understand the physical 

properties by using different tools such as SEM, XRD, UV-Vis, FTIR as well as cyclic 

voltammetry and chronoamperometry to understand the electrochemical studies.  

Chapter 4 explains how molybdenum disulfide -hematite- nanocomposite films can be 

enhanced for photoelectrochemical applications. This chapter introduces the importance of the 

two-dimensional material (MoS2) and ways various amounts of MoS2 doped with α-Fe2O3 can 

affect the morphology and structure of the nanocomposite MoS2-α-Fe2O3. Raman Spectroscopy 

was used to understand physical properties of MoS2-α-Fe2O3. A particle analyzer was utilized to 

estimate the particle size in a liquid phase. 

Chapter 5 describes how p-n configuration can improve photoelectrochemical cell 

properties by using -hematite-molybdenum disulfide as the n-electrode and polyhexylthiophene 

(RRPHTh) - nanodiamond (ND) as the p-electrode. It also discusses how p-n configuration 

prevents the leakage of solvents and eliminates the photo-corrosion process. The mechanism of 

photoelectrochemical cells explains the process for RRPHTH-ND as p-type and MoS2--Fe2O3 n-

type in 1 M NaOH electrolyte. The morphology was identified for MoS2--Fe2O3 to be blooming 

flower-like using SEM. 
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Chapter 6 discusses how the p-n based photoelectrochemical device can enhance the water-

splitting application by using alpha-hematite (α-Fe2O3)-titanium dioxide (TiO2) as the n-electrode 

and polyhexylthiophene (RRPHTh) - nanodiamond (ND) as the p-electrode. This chapter provides 

introduction on how TiO2 is an effective co-catalyst material that can be doped with -Fe2O3 due 

to its capability to absorb both visible light and ultraviolet radiation. The sol-gel technique was 

used to synthesis α-Fe2O3- TiO2 nanomaterials. The film coating (n-type) was performed by 

spinning for TiO2-α-Fe2O3 nanocomposite. The other material, (p-type) RRPHTh-ND, was dipped 

in the solution to create the film. 

Lastly, Chapter 7 summarizes the results of using alpha-hematite nanomaterials for water-

splitting applications. This dissertation found that α-Fe2O3 is a promising photomaterial for the 

splitting of water. The conclusion of this chapter discusses suggestion for future research related 

to α-Fe2O3 material including how to integrate solar cells with photoelectrochemical cells. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

With the Earth’s extreme weather and evidence of climatic change 

accumulating/increasing, global efforts have increased dramatically to secure energy sources that 

are as cheap as fossil fuels but without the unwanted by-products and toxic side effects. This 

chapter reviews the improvements of hydrogen production and the size of the material particles 

into the nanomaterial range resulting in capabilities of clean, renewable energy. Attempts have 

been made to understand the splitting of water into hydrogen and oxygen using alpha-hematite-

based nanomaterial in photoelectrochemical based devices. As discussed in this chapter, several 

methods have been utilized for producing hydrogen it could be the ultimate fuel if produced 

economically. Hydrogen can be produced from H2S, H2O, metal hydrated etc. sources, and 

although the materials and techniques for hydrogen production have been discussed, the 

photoelectrochemical technique has been found to be advantageous over other techniques. 

Freedom from fossil fuel sources and the pollution and toxins associated with them has 

become a reality thanks to the implementation of nanotechnology. Researchers are hopeful that 

clean, renewable, inexpensive and easily obtained energy can be produced using the two most 

plentiful substances/ materials on the planet: sunlight and water (as shown in Figure 1). 



www.manaraa.com

 

6 

 

 

Figure 2.1 Our greatest resources: sun and water (photo credit: personal camera, May 15 

2018) 

 

2.2 Methods of Hydrogen Production  

Different methods have been employed to split H2O and H2S to produce hydrogen gas 

including thermo-chemical [1-5], plasma-chemical [6-8], thermal [9-11], electrochemical [12-14], 

and photochemical methods[15-21]. The photochemical method, however, has the greatest 

potential because it uses a renewable energy source such as solar energy. Figure 2 shows how 

sunlight is used to drive hydrogen production by separating hydrogen sulfide in a photocatalytic 

reactor using a process called photo-catalysis [22].  

Equations are for the photo-catalysis process: 

H2S + OH-  HS- + H2O 

H2S + OH-   S2- + H2O 

Photocatalyst  e-
CB + h+

VB 

2 S2- + 2 h+
VB  S2

2- 

2H S- + h+
VB  S2

2- + 2H+ 
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2H+ + 2 e-
CB  H2 

The net reaction is simply: 

H2S  H2 + polysulfide 

  

 

 

 

 

 

 

 

 

Figure 2.2 Schematic of hydrogen production using photocatalyst [22] 

2.3 Hydrogen Production by Photoelectrochemical Cells (PEC) 

The process of photolysis to produce hydrogen gas is made possible by the use of solar 

cells which are referred to as photoelectrochemical cells (PEC). The cells are irradiated with light 

around the visible region of the solar energy Then, the cell converts the visible light photons from 

the solar energy into electricity for the semiconductor anode and cathode immersed in an 

electrolyte [23]. The photolysis equations of the photo anode reactions are as shown: 

Photoanode: H2O(liquid) + 2holes+ = 2H+
(aq) + 

1

2
O2(g) 

Cathode: 2H+
(aq) + 2e- = H2(g) 

In the PEC cells, the semiconductor photo-anode absorbs the light photons themselves in 

order to facilitate the chemical reactions that take place in the electrolyte being used. Hydrogen 
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gas is produced in the endothermic reaction, resulting in a net change in reactants. This process 

involved in the PEC only slightly differs from the normal electrolysis with the involvement of 

electrons and holes as charge carriers. 

A slight modification of this process using photo-catalysis employs the use of photo-

electrodes that are exposed to generate electrons and holes in the PEC. The photo-catalysts used 

as electrodes separate water directly to produce hydrogen and oxygen gas. Modifications of the 

photo-catalyst structure to produce nano-crystalline coatings in order to improve the yield of 

hydrogen gas has been explored by Alenzi et al. [24]. 

Combining two techniques, the use of solar photoelectrochemical cells (PEC) have each 

been considered in the production of hydrogen gas. These two techniques have been proven to 

improve the yield of hydrogen gas even while using cheap sources of electricity obtained by 

harnessing solar energy and using photoelectrodes in PEC. This has been explored and processed,  

and the outcome as presented is termed the “Integrated Solar-Nano Hydrogen System”[23]. This 

process is designed to boost the production of hydrogen gas using these two above named 

techniques in a single system. Solar energy is harnessed simultaneously by the use of solar cells 

and the heat collectors [23]. The PECs absorb light photons to be used directly as electricity to 

reduce water while the heat obtained from the heat collectors may be used to also generate 

electricity or to increase the temperature of the photoelectrochemical cells [23]. The overall energy 

cost is economically lower since the maximum benefit is derived from the solar energy used for 

the two techniques simultaneously in one system.  

The direct use of the sun’s irradiation is made possible in the use of PEC that has 

photoelectrodes which are made from semiconductor materials. Likewise, the use of heat derived 

from the conversion of solar irradiation is also made possible with the use of semiconductor 
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materials. These two points stress the importance of semiconductor materials in the production of 

hydrogen gas from water splitting using cheap, green, and renewable solar energy. Modifications 

of the semiconductor’s structure in order to alter its electronic properties to improve the efficiency 

of the processes and the yield of hydrogen are considered. These modifications using metallic 

deposition on the surface of the semiconductor is meant to make the resulting nano-composite 

crystalline [23].  

2.4 Mechanism of Photoelectrochemical Cells (PEC) 

The process of electrolysis has been used in generating hydrogen gas with 99% purity using 

direct current to split water molecules into hydrogen gas and oxygen gas. The cathode and anode 

of the electrolyzer used is dependent on the electricity generated from the combustion of fossil 

fuels. The use of solar energy in the generation of hydrogen, however, is in two forms: thermolysis 

and photo-electrolysis.  

Cathode half reaction: 2H+ 
(aq) + 2e- = H2 (g) 

Anode half reaction: 2H2O (liquid) = O2 (g) + 4H+ 
(aq) + 4e- 

Balanced reaction: 2H2O (liquid) = 2H2 (g) + O2(g) 

The equations above show the cathodic reduction equation, the anodic oxidation equation 

and the overall equation of the process of electrolysis[23]. 

Thermolysis uses the energy from the sun to generate heat in materials that are used to 

generate the hydrogen gas. Before expounding upon the use of photo-electrolysis and thermolysis, 

an understanding of the use of solar cells and solar energy is necessary. 

The sun is composed of extremely hot gases in the form of a sphere 109 times larger than 

the earth [23]. The estimated temperature of the sun’s surface is approximately 5,726K, which 

travels through the atmosphere before reaching the earth’s surface[23]. Travelling through the 
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atmosphere, solar radiation becomes reflected, scattered, and absorbed by water vapor, clouds, and 

other particles before reaching the surface of the earth. The average intensity of solar power upon 

reaching the earth is thus estimated to be 1353 W/m2 [23].  

Solar cells that generate electricity using solar power operate based on the photovoltaic 

(PV) effect. The PV effect describes a situation where a material generates electricity when light 

is shone upon it. The materials used in PV cells are semiconductor materials such as silicon and 

gallium arsenide. The generation of electricity is attained when the energy from the incident light 

becomes sufficient enough to excite electrons from the valence band of the molecules of the 

semiconductor material to the conduction band. Generation of electricity from PV cells is simple 

and does not contribute to environmental degradation. 

As shown in Figure 3, the process of photoelectrochemical cells is entrenched in the 

transfer of an electron from the first side, which is the valence band (VB), to the second side, which 

is the conduction band (CB), when sufficient light is absorbed by the photomaterial. The electron 

jumps the bandgap into the conduction band when it becomes excited because of irradiation with 

light of sufficient wavelength and leaves a hole in the valence band. For the promotion of electrons 

from the valence band to the conduction band, the wavelength of the absorbed light must be less 

than or equal to the energy band gap of the semiconductor material. The promotion of an electron 

into the conduction band leaves a hole previously occupied by the electron in the valence band. 

Thus, an electron-hole pair is generated by the photo-catalysis process. The generated electron-

hole pair can participate in one of many pathways. The pathways useful for splitting H2S and H2O 

to produce hydrogen gas are those involving the loss of electrons in the conduction band and loss 

of holes in the valence band due to electrochemical processes. These pathways are influenced by 
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controlling the semiconductor with surface modifications and by adding electrolytes and reactive 

redox (reduction - oxidation) species. 

 

Figure 2.3 Schematic of photoelectrochemical cells (PEC)  

2.5 Photocatalytic Materials 

In a review, Preethi and Kanmani examined the efficiency of different nanomaterials in 

hydrogen gas production using photo-catalysis [25]. This review provides a broad overview of the 

different nanomaterials used for the production of hydrogen gas through the splitting of hydrogen 

sulfide gas and water molecules [25]. Hydrogen sulfide gas is detrimental to the environment 

because of its corrosive nature in the form of sulfide. The use of H2S to produce hydrogen gas is 

therefore preferred to the splitting of H2O. This is not only because it helps remove the 

environmentally harmful hydrogen sulfide gas but also because it is less costly and faster to 

produce. However, despite this preference and desirability for the use of H2S in the production of 

hydrogen gas, the near future depletion of non-renewable energy sources such as coal and fossil 

fuels, which are the major sources of H2S, will result in the non-availability of the gas for the 

production of hydrogen gas [25]. The implication of this is that the splitting of H2O to produce 
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hydrogen gas will compensate for the splitting of hydrogen sulfide gas. Different types of 

nanomaterials have been identified as useful in the production of hydrogen gas. These materials 

include metal oxide semiconductor materials such as TiO2 and BaTi4O9 and metal sulfide 

semiconductor materials such as CdS and RuS2 [25]. 

 
 

Figure 2.4 Band edge positions of semiconductor materials [26] 

Figure 4 shows the conduction band edge and the valance band edge of semiconductor 

materials. One of the lowest bandgaps is 1.1 eV for silicon, which absorbs infrared radiation, while 

one of the highest bandgaps is 3.2 eV for TiO2, absorbing the UV radiation. Sun light comes in 

different forms of radiation, with the three most common forms being UV radiation, visible light, 

and IR radiation. Alpha-hematite material has a low bandgap of 2.1 eV, which can absorb the 

visible light range containing 42% of the sun light radiation [26].  

Most nanomaterials used as photo-catalysts to produce hydrogen gas have been identified 

as giving a higher yield in the production of hydrogen as compared to bulk materials [25]. Those 

that do not give a maximum production are still higher in their yield than bulk materials. The 

technique used to prepare the photo-catalyst plays an important role in the yield of the nanomaterial 

photo-catalyst. The technique affects the particle size of the catalyst and its crystallinity. The 

smaller the particle diameter of the catalyst, the more active the catalyst and consequently, 
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increases the yield of hydrogen production. Improvement in the efficiency of the photo-catalyst is 

also achieved by doping the nanomaterials with transition elements. The different photo-catalysts 

that can be used under irradiation by visible light from a lamp include CuFeO2, CuLaO262, FeGaO3, 

and CuCr2O4/TiO2. These are referred to as spinal photo-catalysts [25]. 

2.5.1 Cadmium Sulfide (CdS) 

Another type of nanomaterial used for the liquid phase of photo-catalysis is cadmium 

sulfide and other materials related to it. The cadmium sulfide can be used alone or doped with 

TiO2 or ZnS in the production of hydrogen gas from hydrogen sulfide dissolved in water or alkali 

solution. As noted previously, the method of production of the photo catalyst influences the 

activity of the catalyst. The cadmium sulfide, as a photo-catalyst, is fabricated through 

hydrothermal and sol-gel techniques to make it highly active for hydrogen gas production from 

water containing sulfide ions under irradiation with visible light. Cadmium sulfide-based photo-

catalysts produce similar results even in a system using hydrogen sulfide dissolved in NaOH 

electrolyte. The semiconductor has the capability to absorb visible light but not in pure water 

because it undergoes anodic photodecomposition [25].  

2.5.2 Zinc Oxide (ZnO) 

Nano structured zinc oxide (ZnO) is also a very stable semiconductor material with photo-

catalytic activity needed for photo-catalysis. Because of the high band gap, photo excitation of 

zinc oxide to produce the electron-hole pair needed for hydrogen gas production from hydrogen 

sulfide gas requires ultraviolet (UV) light [25]. The use of visible light is, however, made possible 

when the zinc oxide is doped with copper, which has a low band gap and good crystallinity [25]. 
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2.6 Alpha-Hematite (α-Fe2O3) 

2.6.1 Introduction and Properties  

Alpha-Hematite (α-Fe2O3) is the most common naturally approachable semiconducting 

photocatalyst with bandgap 2.1 eV. The α-Fe2O3 can absorb up to 40% of solar spectrum energy. 

The photoanode based on α-Fe2O3 has been used in photoelectrochemical application due to 

excellent photochemical stability. Moreover, α-Fe2O3 has been used for different applications such 

as sensors, catalyst, pigments, drug delivery, and photoelectrochemical cells [26]. 

2.6.2 Characterization 

2.6.2.1 X-ray Diffraction (XRD) 

The hematite nanoparticle has been identified to have rhombohedral structure. The α-

Fe2O3 NPs shows the metallic iron consisting of the face-centered cubic (FCC) phase. The major 

peaks are shown in Figure 5 for the α-Fe2O3 NPs that have been assigned to be (0 1 2), (1 0 4), 

(1 1 0), (1 1 3), (0 2 4), (1 1 6), (0 1 8), (2 1 4) and (3 0 0) planes [27].  

 

Figure 2.5 X-ray diffraction pattern of -Fe2O3 [27] 
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2.6.2.2 Fourier Transform Infrared Spectroscopy (FTIR)  

The FTIR has been a profound tool to understand the chemical bounds of nanomaterials. 

Figure 6 shows a 3463 cm−1 band due to O-H stretching, with 1631 cm−1 due to C=C stretching 

present in the nanomaterials. However, the presence of bands at 580 and 474 cm−1 are due to Fe-

O group found in the α-Fe2O3 NP [28].  

 

Figure 2.6 FTIR spectra of -Fe2O3 [28] 

2.6.2.3 Scanning Electron Microscopy (SEM)  

SEM is a versatile toll to investigate the shape, size, and morphology of nanostructured 

materials. Figure 7(a) shows the flower-like shape structure while Figure 7(b) shows how the 

spindle-like nanoparticles form a micro-flower structure [28]. 
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Figure 2.7 SEM images of -Fe2O3 [28] 

2.6.2.4 Transmission Electron Microscopy (TEM)  

The transmission electron microscopy (TEM) study is a versatile method to understand the 

size and shape of nanomaterials. The TEM has shown a resolution of 0.2 nm for synthesized 

hematite nanomaterial (Figure 8(a)). Figure 8(c) observes 2.4 nm in size of mean nanoparticle 

alpha-hematite material. In addition, TEM shows how the particles are well distributed [29]. 

 

Figure 2.8 TEM images of -Fe2O3 [29] 
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2.7 Enhanced Water Splitting in α-Hematite 

Water splitting using α-hematite has been improved through modification of the structure 

(shape and size) of the nanomaterials. The properties of α-hematite are largely affected if the 

structure is nanotube, nanowire, hollow tubular, or spherical structure. However, the self-

assembled or array could easily affect the properties of the water splitting application.  Doping 

using soft metal, transition metal, and dichalcogenide have been performed to enhance the physical 

properties of the nanomaterials. In addition, the composite, or co-catalyst formation with different 

transition metal oxide with α-hematite, has been attempted to improve the water splitting properties 

in photoelectrochemical cells [30]. 

2.7.1 Modification Structure 

Different synthesis processes affect the shape and size of the nanomaterial. Lassoed et al. 

have shown that an increase of precursory (FeCl3) concentration leads to a size increase of the 

alpha-hematite nanomaterial [30]. They have shown that [Fe3+] with 0.05 M revealed the best 

crystallinity, size, and bandgap of 2.09 eV. Figures (a-d) show the spherical structure of α-hematite 

varying in size from 21 nm to 82 nm [30]. 

 

Figure 2.9 SEM images of various concentrations of -Fe2O3 [30] 



www.manaraa.com

 

18 

 

2.7.1.1 Nanotube (NTAs) and Nanorod (NRA) Structure 

As shown in Figure 10, the nanotube of α-Fe2O3 and nanorod of SnO2 can be synthesized 

using the hydrothermal process. The nanotubes synthesized for α-Fe2O3 have been found to be 

~50 nm in diameter with a wall thickness of ~10 nm. The imposition of various times affects the 

size of the nanorod and nanotube. The hydrothermal reaction of one hour has been found to result 

in a thin and dense nanoparticle layer. However, the reaction time of two hours showed the 

cuboid nanorods of SnO2 with a width of approximately of 50 nm [31]. 

 

Figure 2.10 Schematic of SnO2 NRAs/α-Fe2O3 NTAs composite nanostructure [31] 

2.7.1.2 Nanowire Structure 

The nanowire of α-Fe2O3 with 1-5 μm length can be synthesized by heating to 

approximately 700 °C in a time scale of seconds. Figure 11 shows the SEM pictures of α-Fe2O3 

grown through 100 nm/s. The NW can then be grown in a crystallographic direction. The sword-

like shape nanowire growth is controlled through the diffusion process. Figure 12 shows the 

schematic of nanowire growth in ambient temperature [32]. 
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Figure 2.11 SEM images of iron wire surface after synthesis [32] 

 

Figure 2.12 Schematic of the NW growth in ambient air [32] 

2.7.2 Doping 

Doping in general is the tailoring of physical and chemical properties of semiconductors 

for various applications. Ti, Al, Sn, Mn, Ti, Si, Ge, etc. transition metals have been doped with α-

Fe2O3 for water-splitting applications. Doping using various transition metals affects the 

morphology, structure, shape of α-Fe2O3. Moreover, the doping brings a change in lattice of 

hematite rather than a change on surfaces. The doping is generally organized for superlattice 

structures or to take a disordered, solid solution state. Clusters in the structure are also caused by 
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doping as well as changes in magnetic properties (electrochemical, electrical and electronic 

properties) of α-Fe2O3 undoped bulk hematite as shown in Table 2.1. Additionally, the structure, 

morphology, and size of α-Fe2O3 are dependent on the type of dopant. As shown in Figure 13, the 

germanium and silicon doping in α-Fe2O3 observes nanosheets structures, whereas the tin doping 

reveals peanut-like nanoparticles of α-Fe2O3 [33]. 

Table 2.1: Different doping materials with alpha-hematite. 

Doped Material  Synthesis  Properties  Volt Finding  

α-Fe2O3 [34] Hydrothermal   1.5 V 4 μA cm−2 

Au-α-Fe2O3 [34] Hydrothermal  Nanorod (650 

nm) 

1.5 V 1.16 mA cm−2 

CoOOH/(Ti, C)-

Fe2O3 (CTCF)[35] 

facile approach 

 

Nanorods 

 

- 1.85 mA cm−2 

Carbon-doped α-

Fe2O3 [36] 

magnetron 

sputtering  

2.13-2.16 eV 

 

0.6V 

 

1.18mA/cm2 

 

Cr-doped α-Fe2O3 

[37] 

 Nanorod arrays  3.5 and 6 times 

Co-doped Fe2O3 

[38] 

 nanorods 

 

1.23 V 

 

1.25 mA/cm2 

 

Ti-doped α-Fe2O3 

[39] 

hydrothermal nanocubes 1.23V IPCE of 25.2% 

Ti-doped (α-

Fe2O3) [40] 

solution growth  1.0 V 

 

0.66 mA cm−2 

 

WO3-doped (α-

Fe2O3) [41] 

doctor blade method 

 

 0.8 V 1.18 mA/cm2  

 

Zirconium-doped 

α-Fe2O3 [42] 

electrodeposition 

method 

 0.6 V 2.1 mA/cm2 

 

S-doped Fe2O3 

[43] 

 Nanorods array  1.23 V 1.42 mA/cm2 

α-Fe2O3/CdS [44] facile two-

stage method 

 0.4 V 0.6 mA/cm2 

Fe2O3/BiVO4 

[45] 

metal-organic 

deposition method 

 1.23 V 7.0±0.2 mA cm−2 

Sn-doped Fe2O3 

[46] 

hydrothermal nanocorals 1.23 V 1.86 mA/cm2 

Pt-doped Fe2O3 

[47] 

electrodeposition  0.4 V 1.43 mA/cm2 

ZnO/Fe2O3 [48]  Core−Shell 

Nanowires 

0.6 V ∼0.75 and ∼0.5 

mA cm−2 

Zn-doped α-Fe2O3 

[49] 

 Nanotube arrays 0.5 V 40.4 μA cm−2 
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Figure 2.13 Schematic for various doping materials (Ge, Si, Mn, Sn, Ti) in α-Fe2O3 [33] 

2.8 Applications of α-Hematite Photoconduction Material 

2.8.1 Sensing  

The alpha-hematite can be used for the sensing device and Ag can be doped to enhance the 

electronic properties of alpha-hematite. The results showed that Ag particles enhance the surface 

of the composite and offer much higher detection of CH3SH than the bare alpha-hematite. The 

hematite containing 3% silver shows the sensing of CH3SH in  the range of 20–80 ppm at room 

temperature [50].  

2.8.2 Photovoltaic Cells (PV)  

Photovoltaic cells are one the most important applications globally, and countless materials 

have been tested to achieve high results. Alpha-hematite is a desirable material for PV because it 

is cheap, durable, and nontoxic and can absorb visible light from sun irradiation. The size of the 

material can also affect the absorption intensity; a 400-600 nm area has a higher absorption 
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intensity than 250-400 nm area. The size decrease from 48 to 5 nm brings changes in the intensity 

in addition to the shift in absorption band edge at wavelengths from 533 to 488 nm. The increase 

in magnetic tilt coupling brings the pair excitons, which causes local d-d transition and band tail 

types of charge-transfer. The band tail charge transfer produces photovoltaic responses due to 

delocalization [51] 

2.8.3 Fuel Cell Production  

Alpha-hematite is an abundant material that can be used in various applications. One 

application that can utilize alpha-hematite is the production of fuel cells using Microbial fuel cell 

(MFCs) devices. These devices can produce electricity using microorganisms as biocatalysts due 

to the electrochemical reactions. In this device, the self-assembly technique was used to synthesize 

alpha-hematite nanorod with chitosan (CS) based on layer-by-layer (LBL). This technique 

enhanced the modified (Fe2O3/CS)4/ITO anode and produced high electricity of 320%  compared 

to the unmodified anode and also other enhanced anodes [52]. 

2.8.4 Water Purification 

Alpha-hematite is a semi-conducting material with a low band gap and is considered a 

photo material that can absorb visible light. The alpha-hematite can work for water purification, 

but it must be doped to enhance its properties. TiO2 is also a photo-material that can be synthesized 

with alpha-hematite by using impregnation of Fe3+ into meso-TiO2 followed by calcination at 

300 °C. XRD and TEM were used to investigate the morphology and structure [53].  

2.8.5 Lithium Batteries 

Lithium battery use is a broad subject, and many experiments have been performed to test 

various materials offering good results; alpha-hematite is one. As shown in Figure 29, the spindle-

like porous α-Fe2O3 was synthesized using the metal organic framework (MOF) template. The 
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spindle structure of α-Fe2O3 was investigated for Li storage capacity. The use of MOF enhanced 

the charge storage in Li-ion batteries due to a high surface area. Figure 22 (a& b) shows SEM 

images of the FeOx-C composite while Figure 29 (c and d) shows the particle length by using 

TEM varying from 0.8 μm to 0.4 μm.[54] 

 

Figure 2.14 SEM images of FeOx-C composite [54] 

2.8.6 Supercapacitor 

The supercapacitor is one application that uses alpha-hematite after enhancing its 

properties. PANI can be synthesized with alpha-hematite to have new structure nanowire arrays. 

The α-Fe2O3-PANI core−shell nanowire arrays have been synthesized for use in supercapacitor 

electrodes as shown in Figure 23 (a). The new structure of alpha-hematite-PANI offers the 

electrode for supercapacitor application having fast ion and electron transfer, large surface area, 

and structure stability. As shown in Figure 23 (b), α-Fe2O3-PANI nanowire arrays showed the 

volumetric capacitance of 2.02 mF/cm3 and energy density of 0.35 mWh/cm3. The supercapacitor 
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from α-Fe2O3-PANI nanowire arrays showed high cycling stability with 95.77% retention of 

capacitance after 10 000 cycles.[55] 

 

Figure 2.15 (a) Schematic of the structure of the supercapacitor (b) CVs of the α-Fe2O3-PANI 

and PANI electrodes [55] 

 

2.8.7 Corrosion Resistance 

Alpha-hematite is useful for corrosion resistance, but it must be enhanced by other 

materials to yield high results. One of the candidate materials that can enhance properties of alpha-

hematite is PANI. Chemical oxidative polymerization of aniline was used to make PANI-α-Fe2O3 

NCs. The synthesis of PANI-α-Fe2O3 NCs reduces the conductivity due to alpha-hematite that 

hinders PANI conductivity. Potentiodynamic polarization technique was utilized to test the coating 

(PANI-α-Fe2O3 NCs) for the corrosion of 316LN stainless steel in 3.5% NaCl. The test for PANI-

α-Fe2O3 provides high results for the corrosion resistance [56]. 

2.9 Conclusion 

In summary, it be clearly stated that the involvement of photomaterials in the study of 

hydrogen production for clean energy will be an important element for future research. Doping 

alpha-hematite with transition metals, dichalcogenide materials and co-catalyst materials can 

improve the physical and electronic properties. Several synthesis methods exist, but the sol-gel 

method is easy to work with because it is less expensive and faster than other methods. The use of 
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nanoparticles, nano-coatings, nano-films, and other nano-products in existing methods of 

hydrogen generation have effectively demonstrated the premise that increasing the surface area for 

reaction substantially increases the rate of production and therefore increases the total volume of 

hydrogen fuel produced per unit of time for any given process. 
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CHAPTER 3: ALUMINUM - -HEMATITE THIN FILMS FOR 

PHOTOELECTROCHEMICAL APPLICATIONS1 

3.1 Introduction 

Hydrogen has been considered  clean energy because of its high energy density and ease 

in burning with oxygen to produce water [57]. Hydrogen production using photocatalytic materials 

under a photoelectrochemical technique is an appealing and cost-effective technique.  Water 

splitting is an endothermic process which requires more than 1.23 V vs NHE (Eq. 1) [57]. 

𝐻2𝑂 → 𝐻2(𝑔𝑎𝑠) +
1

2
𝑂2(𝑔𝑎𝑠)   ( 𝐸

0 𝑟𝑒𝑑𝑜𝑥 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 1.23 𝑉 𝑣𝑠 𝑁𝐻𝐸) Eq. 1 

So, several photoanodes ( WO3 [58], ZnO [59], TiO2 [60, 61], and -Fe2O3 [62-65]) have been 

used in PEC-based water splitting to produce hydrogen. However, -Fe2O3 and metal ion doped 

- Fe2O3 materials have been considered suitable photoelectrode materials [63, 66-69]. -Fe2O3 

is indeed an excellent photoelectrode material due to the ease in synthesis, abundance, low cost, 

and favorable band gap (∼2.1 eV) for splitting water to hydrogen [47, 57, 70-72]. -Fe2O3 has 

high resistivity, shows slow surface kinetics, and possesses low electron mobility and high 

electron-hole combination due to low carrier diffusion properties [73]. 

The intrinsic electronic properties of -Fe2O3 can be controlled by doping with different 

metal ions (Ti, Pt, Mo, Cr, Al, Zn etc.) [73-78]. The metal doped Fe2O3 nanorod array has shown 

nearly 5% higher solar-to-hydrogen conversation efficiency for photoelectrochemical water 

                                                 
1This chapter has been published “Alrobei, H., A. Kumar, and M.K. Ram, ALUMINUM–α-HEMATITE THIN 

FILMS FOR PHOTOELECTROCHEMICAL APPLICATIONS. Surface Review and Letters, 2017: p. 1950031” 

and copyright permission in appendix A.1 
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splitting than the undoped -Fe2O3 [79]. The smaller sized metal ions ( boron and aluminum) in 

-Fe2O3 have shown improved charge transport properties through strain introduction in the lattice 

structure, thus increasing the light absorption[80]. 

Under this manuscript, different percentages of Al ions were used in -Fe2O3 to enhance 

the hole/electron transport properties, homogenous structure, and stability of the nanomaterial. The 

low to high percentage of aluminum from 0.5% to 30% in -Fe2O3 structure was introduced to 

understand the physical properties of Al--Fe2O3 and their photoelectrochemical properties under 

light. The concentration of aluminum ions varied from 0.5%, 10%, 20% and 30% of -Fe2O3. The 

nanomaterials were characterized using X-ray diffraction, SEM, FTIR and UV-vis techniques, 

respectively. Cyclic voltammetry (CV) and impedance studies were conducted to understand the 

electrochemical behavior of electrode/electrolyte interface under the influence of light. The 

chronoamperometry studies on Al--Fe2O3 were performed to understand the properties of 

splitting water into hydrogen. 

3.2 Experimental Details 

3.2.1 Materials 

FeCl3, AlCl3, NaOH, NH4OH, and fluorine tin oxide (FTO) coated glass with resistance of 

~10 Ω were purchased from Sigma-Aldrich. A centrifuge was used to clean the synthesized 

nanomaterial from the resulting solution.  

3.2.2 Experimental Procedure 

The -Fe2O3 and Al--Fe2O3 nanomaterials were synthesized via sol-gel technique. Eq.2 

reveals the synthesis of Al--Fe2O3 nanomaterial using this technique. Initially, various 

concentrations of FeCl3and AlCl3 were prepared. Table 1 shows the amount and ratio of chemicals 

used in the synthesis of Al--Fe2O3 nanomaterial. NaOH solution of 1M was added to the mixture 
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solution of FeCl3 and AlCl3 in a round bottom flask and stirred with a magnet. Later, a condenser 

was connected to the round bottom flask, the solution temperature was raised to 90-100 oC, and 

the reaction continued for 24 hours. The reaction was terminated after 24 hours, and the solution 

was cooled at room temperature. The synthesized material was separated using a centrifuge and 

continuous cleaning with water. The Al--Fe2O3 nanomaterials were initially left drying at room 

temperature and then dried at various temperatures (100, 200, 300, 400, and 500 oC). In each case, 

the temperature was maintained in a furnace for one hour. The materials were brought to room 

temperature and collected in a tight bottle. 

𝐹𝑒𝐶𝑙3. 6𝐻2𝑂 + 𝐴𝑙𝐶𝑙3     
 𝑁𝑎𝑂𝐻 (ℎ𝑒𝑎𝑡 110 𝑜𝐶)/𝑠𝑜𝑛𝑖𝑛𝑎𝑡𝑖𝑜𝑛/𝑑𝑟𝑦/ℎ𝑒𝑎𝑡     
→                                   𝐴𝑙 −  𝐹𝑒2𝑂3  Eq. 2 

Table 3.1: Amount of chemical used for synthesis of Al--Fe2O3 

Chemicals 0.5% AlCl3 

w.r.t FeCl3 

5% AlCl3 

w.r.t FeCl3 

10% AlCl3 

w.r.to FeCl3 

20% AlCl3 

w.r.to FeCl3 

30% AlCl3 

w.r.to FeCl3 

FeCl3 0.68 g 6.8 g 6.8 g 6.8 g 6.8 g 

AlCl3 0.0266g 0.266g 0.532g 1.064g 1.596g 

NaOH 4.8g 4.8g 4.8g 4.8g 4.8g 

 

 

Figure 3.1 Synthesized -hematite (-Fe2O3) and Al- -Fe2O3 materials 
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3.2.3 Film Formation of Substrate 

The Al--Fe2O3 nanomaterial paste was prepared by mixing acetic acid. Initially, 500 mg 

of each Al--Fe2O3 (0.5%, 10%, 20%, 30%) nanomaterial was ground and mixed with 10 ml acetic 

acid and left for 10 hours. Later, the thin film was applied to quartz, silicon, and fluorine tin oxide 

(FTO) by the solution cast technique. The coated films were cured at different temperatures of 

300, 400 and 500 oC with an interval of one hour. The films were then cooled to room temperature 

before any measurements were taken. 

3.3 Physical Properties Studies 

3.3.1 UV-Visible Spectroscopy (UV-Vis) 

Figure 2 shows UV-visible spectra of Al--Fe2O3 film on quartz substrates. Table 2 shows 

the UV-vis peaks at nm for various percentages of Al in Al--Fe2O3 nanomaterial. Its UV-vis 

absorption band is located between 580-680 nm, depending on the aluminum present in the -

Fe2O3 structure. The characteristic broad absorption band at 639 nm and sharp band at 560 nm for 

-Fe2O3 are observed in Figure 2. (2.2 eV) nm result from the -Fe2O3. The band at 580 nm, which 

is related to 2.2 eV, is indicative of the band gap of the -Fe2O3. This 680 nm band is due to the 

3d-3d excitation of Fe+3 in -Fe2O3. The presence of Al reveals a change in band gap from 2.1 eV 

to 2.4 eV, which is consistent with the results obtained by Shine et al. [69] 

Table 3.2: UV-vis peaks at nm for various percentages of Al in Al--Fe2O3 nanomaterial 

% of Al in Al--Fe2O3 UV-vis peaks in nm 

30% Al 407, 498 broad, 620 broad, 777, 802, 920, 995 

20% Al 546, 573, 624 broad, 721, 735, 748 ,815 broad 

10% Al 403, 503 broad, 594 broad, 674 broad, 734, 786 

0.5% Al 381, 409 broad, 486 broad, 595 broad, 709 broad, 850 broad 
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Figure 3.2 UV-vis absorption spectra of Al--Fe2O3 

3.3.2 Scanning Electron Microscopy (SEM) 

Figure 3 shows SEM images of Al--Fe2O3 nanomaterial film as a function of various 

percentages of Al. The images show the uniform distribution of Al--Fe2O3 nanoparticles. The 

images of Al--Fe2O3 nanomaterials for the varying Al doping is increased from 0.5% to 30%. 

This reveals that the size of the particles changes by increasing the aluminum in the -Fe2O3 

structure. 30% Al is not able to change the polycrystalline structure of -Fe2O3, which does not 

interact at molecular level. The increase of Al ions shows clustering and/or compact formation of 

Al --Fe2O3. The clustering in the structure shows an increase in Al content in the structure of Al-

-Fe2O3 nanomaterial films.  
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Figure 3.3 Scanning electron micrographs (SEM) of Al doped -hematite. The percentage of 

doping of Al in Al--Fe2O3 is shown. 

 

3.3.3 X-Ray Diffraction (XRD) 

 Figure 4 depicts the x-ray diffraction study of various Al doped Al--Fe2O3 nanomaterial 

films, and Table 3 shows X-ray diffraction 2ϴ in degrees for various percentages of Al in Al--

Fe2O3 nanomaterial. It is clear from the X-ray diffraction pattern that the -Fe2O3 has a 

polycrystalline structure. The Al ion incorporation in the structure does not cause lattice distortion 

in the Fe2O3 film. The structure, due to Al ions,  forms a rhombohedral crystalline structure [69]. 

The small and wider X-ray diffraction peaks are a result of cluster-point defects in the structure of 

Al--Fe2O3 nanomaterial films. 
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Table 3.3: X-ray diffraction for various percentages of Al in Al--Fe2O3 nanomaterial 

% Al in Al--Fe2O3 X-ray diffraction 2ϴ in degree 

30% 31.05, 33.07, 35.61, 45.43 

20% 24.11, 31.5, 33.09, 35.61, 45.41, 49.37, 53.97 

10% 31.67, 33.05, 35.57, 45.37 

0.5% 24.13, 31.69, 33.15, 35.61, 45.45, 49.43, 54.13, 62.49 

 

 

Figure 3.4 X-ray diffraction pattern of Al--Fe2O3 

3.3.4 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR spectra of -Fe2O3 is shown in Figure 5. Curve 1 this figure shows FTIR peaks of -

Fe2O3 at 3414, 3029, 2934, 2843, 1637, 1497, 1446, 902, 748, 697, 553 and 474 cm-1. The -Fe2O3 

material is related to hydroxyl OH groups at 3414 cm-1 due to  (OH) stretching, while 1627 cm-1 

is due to (OH) vibration. The band at 553 cm-1 is due to Fe-O vibration mode in Fe2O3, and the 
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bands at 697 cm-1 and 474 cm-1 result from lattice defects in Fe2O3 [81, 82]. Curve 2 shows FTIR 

peaks of Al--Fe2O3 at 3400, 3100, 3088, 2925, 2846, 1869, 1809, 1744, 1637, 1602, 1493, 1451, 

1387, 1181, 1092, 1065, 841, 758, 702,544 and 479 cm-1.  The presence of doping decreases the 

FTIR band at 697 cm-1. However, there is a marked shift of the band from 479 to 460 cm-1 due to 

Al ions. The infrared shift and the appearance of a band  at 670 cm-1 is related to Al atom 

replacement of Fe in Al--Fe2O3 films [82, 83].  

 

Figure 3.5 FTIR spectra of Al--Fe2O3. Each curve shows the presence of aluminum with Fe2O3 

given as: curve 1 = -Fe2O3, Curve 2 = 0.5% Al--Fe2O3, Curve 3 = 20% Al--Fe2O3 and Curve 

4 = 30% Al--Fe2O3. 

 

3.4 Electrochemical Studies 

3.4.1 Cyclic Voltammetry  

The set-up of electrochemical measurements has been adopted similar to our earlier 

publications on hybrid films [84, 85]. Figure 6 shows cyclic voltammetry (CV) studies of 20% Al-

-Fe2O3 in 1M NaOH in a three-electrode configuration of an electrochemical setup, with platinum 

(Pt) as a reference and Ag/AgCl as a reference electrode. The figure indicates an increase in 
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electrochemical properties as a function of Al content (Table 4). While Al ions induce the 

electrochemical properties, the CV indicates that films are highly conductive for a voltage of 

approximately 1.5 V; however, it is due to the oxidation of water. 

 

Figure 3.6 Cyclic voltammetry of Al--Fe2O3 in 1M NaOH in three electrodes with platinum as 

reference and Ag/AgCl as reference electrode 

 

Figure 7 shows CV of 20% Al--Fe2O3 in 1M NaOH in a three-electrode setup with Pt as 

the reference and Ag/AgCl as the reference electrode. The figure clearly shows the reverse 

properties of the Al--Fe2O3 material in the 1 M NaOH based electrolyte. It is clear from the figure 

two oxidation and two reduction peaks exist. The diffusion coefficient has been calculated for 

using a peak current for a reversible cyclic voltammetry, which is given by Randles-Sevcik (Eq. 

3), 

IP = (2.69 x 10
5)n3/2ACD1/2ν1/2    Eq. 3 

where n = number of electrons, A = electrode area (cm2), C = concentration (mol/cm3), D = 

diffusion coefficient (cm2/s) and ν = potential scan rate (V/s). 
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Figure 3.7 Cyclic voltammetry of 20% Al-- Fe2O3 in 1M NaOH in three electrodes with 

platinum as reference and Ag/AgCl as reference electrode 
 

Figure 8 shows the variation of current (A) vs scan rate (V/sec)1/2 for 20% Al--Fe2O3 in 

1M NaOH in a three-electrode setup with platinum counter and Ag/AgCl as a reference electrode. 

The diffusion coefficient has been estimated to be 0.03 x 10-14 cm2/sec. 

 

Figure 3.8 Cyclic voltammetry of Al--Fe2O3 with and without light in 1M NaOH in three 

electrodes with platinum as reference and Ag/AgCl as reference electrode. 

y = 0.1x - 7E-18
R² = 1

0

0.004

0.008

0.012

0 0.05 0.1 0.15

cu
rr

e
n

t 
(A

)

scan rate (V/sec)1/2



www.manaraa.com

 

36 

 

Figure 9 shows the CV of Al--Fe2O3 with and without light in 1M NaOH in a three-

electrode setup with platinum as a reference and Ag/AgCl as the reference electrode. The 

voltammogram is reference and Al--Fe2O3/on ITO or steel is the working electrode.  The CV 

studies were made with and without light. The figure clearly shows photocurrent effects with a 

marked increase in the current due to a photocatalytic effect on Al--Fe2O3. 

 

Figure 3.9 Variation of current (A) vs scan rate (V/sec)1/2 for 20% Al-- Fe2O3 in 1M NaOH in 

three electrodes with platinum as reference and Ag/AgCl as reference electrode 

 

3.4.2 Schematic of Hydrogen Production  

The onset for the splitting of water is shown to be in the range of 1.3 to 2 volts [86]. The 

effect is also checked using chronoamperometry with an applied potential of 1.23V to 1.7 V 

between anode and cathode with reference to Ag/AgCl. The photocurrent can be clearly 

distinguishable with and without light between 1.23 to 2 volts. 

The process of water oxidation and hydrogen production has been studied [57, 87] and Al- 

-Fe2O3 will have a similar production of hydrogen in water as shown in Eq. 4 and 5.  

Photoanode: 4OH− +  4ℎ+ →   4H2O + O2   Eq.4 

Counter cathode: 4𝐻2O +  4𝑒
− →   4H2 + O2   Eq.5 
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The Al--Fe2O3 is used for hydrogen evolution in 1 M NaOH-based electrolyte. The 

cathode side shows the production of hydrogen, and an attempt was made to include the band 

diagram of the photocatalytic cells and hydrogen production based on earlier studies only for Al-

-Fe2O3 [57, 87]. The effect of the band gap has a profound influence on the production of 

hydrogen as shown in the schematic in Figure 10.  

 

Figure 3.10 Schematic of hydrogen production using Al--Fe2O3 photocatalyst in 1 M NaOH 

 

3.5 Conclusion 

The synthesized Al--Fe2O3 observes the bandgap between 2.1 eV to 2.4 eV. The increase 

of Al contents in -Fe2O3 shows clustering due to the denser formation of the Al--Fe2O3 particle. 

The structure of aluminum doping as well as composite formation due to a high percentage of Al-

shows a rhombohedra structure. The small, wider peaks introduced in Al--Fe2O3 are a result of a 

cluster-point defect. However, there is a marked shift of the band at 479 cm-1 due to the presence 

of aluminum in -Fe2O3. The photocurrent can be clearly distinguishable with and without light 

between 1.23 and 2 volts. We are at present researching the photoelectrochemical properties of 

MoS2 composite with -Fe2O3 nanomaterials to further enhance the photocurrent in the -Fe2O3 
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photocatalyst. The Al--Fe2O3 nanostructured thin film provides easy production of hydrogen 

using the PEC water-splitting process, which could reveal a possible renewable energy application 

in future.  
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CHAPTER 4: MOLYBDENUM DISULFIDE -HEMATITE-NANOCOMPOSITE FILMS 

FOR PHOTOELECTROCHEMICAL APPLICATIONS2 

4.1 Introduction 

Photoelectrochemical cells (PEC) produce hydrogen through the splitting of water using 

renewable sources such as the sun and water [57, 68, 88]. Photoelectrochemical (PEC) cells have 

been used to transform solar energy to hydrogen gas by splitting water into hydrogen and oxygen, 

hence offering clean and renewable energy [89]. Moreover, photoelectrochemical cells (PEC) have 

attracted attention since the  first application of titanium dioxide (TiO2) by Honda and Fujishima 

in 1972 [90]. Nevertheless, the large bandgap of TiO2 (3.1–3.3 eV) inhibits visible light absorption 

which confines the efficiency of  solar-to-hydrogen conversion efficiency to 2.2% [90]. So, it is 

necessary to use material that has a small band gap and easy to harvest energy using sunlight 

(visible light 53%) [91]. Iron oxide, bismuth vanadate, tungsten oxide, and tantalum nitride are 

examples of low band gap semiconducting materials [90]. -Fe2O3 is one of the most attractive 

photo-anode materials with an efficiency of 16% to convert solar-to-hydrogen energy [70, 90, 92-

98]. The -Fe2O3 has been used for photoelectrochemical applications due to its optical properties, 

low bandgap (2.1–2.2 eV), low cost, nontoxicity, high chemical stability, and abundance in nature 

[90]. However, -Fe2O3  also has several drawbacks such as shorter hole diffusion length, low 

conductivity, shorter life time of photoexcitation, and deprived reaction kinetics of oxygen 

                                                 
2 This chapter has been published “Alrobei, H., A. Kumar, and M.K. Ram, A New Insight in the Physical and 

Photoelectrochemical Properties of Molybdenum Disulfide Alpha-Hematite Nanocomposite Films. American 

Journal of Analytical Chemistry, 2017. 8(08): p. 523” and copyright permission in appendix A.2 
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evolution in photoelectrochemical applications [26].  The doping with several metallic ions such 

as zinc  [99], titanium [100, 101], molybdenum [102], aluminum [74],  platinum [47], silicon [103-

105], graphene [106, 107], and cadmium sulfide [108]  has shown improved PEC performance. 

The zinc and aluminum doped -Fe2O3 has shown enhanced photoelectrochemical properties 

compared to -Fe2O3 nanostructures [109-111].  

Recently, two-dimensional (2D) dichalcogenide material, molybdenum disulfide (MoS2), 

with a bandgap of 1.8 eV, has been used as n- and p-types structures for photoelectrochemical 

studies [90]. The MoS2 shows stimulating photocatalytic activity due to its bonding, chemical 

composition, doping, and nanoparticle growth on various film matrices, and has been used for 

hydrogen production in nanocluster structures [88, 112-115]. Additionally, MoS2 produces various 

applications in photocatalysts, phototransistors, and sensor applications [90]. It is understood that 

MoS2 could play a central role in charge transfer with slow recombination of electron-hole pairs 

due to photo- energy with the  charge transfer rate between surface and electrons [116].  

Under this work, MoS2 particles were used to promote electron transport properties of the 

α-Fe2O3 nanomaterial using doping and homogenous structure formation as MoS2-α-Fe2O3 

nanomaterials. The doping of MoS2 particles varied by 0.1%, 0.2%, 0.5%, 1%, 2% and 5% in α-

Fe2O3. The X-ray diffraction, SEM, FTIR, Raman spectroscopy, particle analyzer, and UV-vis 

techniques were used to characterize various percentages of MoS2 in MoS2-α-Fe2O3 nanomaterials. 

The electrochemical and photoelectrochemical studies were performed on MoS2-α-Fe2O3 

nanostructures by cyclic voltammetry (CV) and impedance measurements for water-splitting 

applications. 
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4.2 Experimental Details 

4.2.1 Materials 

 The materials iron chloride (FeCl3), aluminum chloride (AlCl3), sodium hydroxide 

(NaOH), MoS2, and ammonium hydroxide (NH4OH) were procured from Sigma-Aldrich. The ~10 

Ω resistance of fluorine tin oxide (FTO) coated glass was purchased also from Sigma-Aldrich. The 

synthesized MoS2-α-Fe2O3 nanomaterials were cleaned using centrifuged containers.  

4.2.2 Experimental Procedure 

The sol-gel technique was used to synthesize both -Fe2O3 and various compositions of 

MoS2--Fe2O3 nanomaterials. Equation 1 shows the synthesis process of MoS2--Fe2O3 

nanomaterials. Table 1 observes the types and amounts of chemicals used in the synthesis of MoS2-

-Fe2O3. Different concentrations of FeCl3 with MoS2 were prepared in 500 ml round bottom 

flasks. The solution was stirred for one hour after the addition of the NaOH solution. The chemical 

reaction continued at 90-100 oC after the round bottom flask was connected to a condenser. The 

reaction was held for 24 hours and then allowed to cool at room temperature. The centrifuge was 

used to separate the synthesized nanomaterial with the use of sufficient water. Initially, the material 

was left to dry at room temperature for one day. The synthesized materials containing different 

ratios of α-Fe2O3 to MoS2 in MoS2--Fe2O3 were obtained. Figure 1 shows the photographs of the 

MoS2--Fe2O3 materials synthesized using various percentage of MoS2 to -Fe2O3. The immediate 

doping of 0.1% MoS2 changes the color of -Fe2O3, whereas the dark red color can be visualized 

with the increase of MoS2 percentage in -Fe2O3. The each synthesized MoS2--Fe2O3 

nanomaterial was dried for one hour at various temperatures (100, 200, 300, 400, and 500 oC). The 

materials were allowed then cooled at room temperature to obtain the dry powder. The 

nanomaterials were characterized using various physical techniques, and electrodes on conducting 
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substrates were prepared to study the electrochemical and photochemical properties of MoS2--

Fe2O3. 

𝐹𝑒𝐶𝑙3. 6𝐻2𝑂 + 𝑀𝑜𝑆2     
 𝑁𝑎𝑂𝐻 (ℎ𝑒𝑎𝑡 110 𝑜𝐶)/𝑠𝑜𝑛𝑖𝑛𝑎𝑡𝑖𝑜𝑛/𝑑𝑟𝑦/ℎ𝑒𝑎𝑡     
→                                   𝑀𝑜𝑆2 −  𝐹𝑒2𝑂3  Eq. 1 

Table 4.1: Amount of chemical used for synthesis of MoS2-composite -hematite 

Chemicals 0.1%MoS2 

w.r.to 

FeCl3 

0.2% MoS2 

w.r.to 

FeCl3 

0.5% MoS2 

w.r.to 

FeCl3 

1% MoS2 

w.r.to 

FeCl3 

2% MoS2 

w.r.to 

FeCl3 

5% MoS2 

w.r.to 

FeCl3 

FeCl3 6.8 g 6.8 g 6.8 g 6.8 g 6.8 g 6.8 g 

MoS2 0.013 g 0.026 g 0.065 g 0.1296 g 0.2592 g 0.648 g 

NaOH 4.8 g 4.8 g 4.8 g 4.8 g 4.8 g 4.8 g 

C19H42BrN 0.5 g 0.5 g 0.5 g 0.5 g 0.5 g 0.5 g 

 

 

Figure 4.1 Synthesized -hematite (-Fe2O3) and MoS2--Fe2O3 composite materials 
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4.2.3 Film Formation of Substrate 

The thin film of MoS2--Fe2O3 was fabricated on various FTO coated glass plates and 

silicon substrates using acetic acid. Initially, the acetic acid was used to prepare a homogenous 

paste of MoS2--Fe2O3 nanomaterial.  500 mg of MoS2--Fe2O3 (0.1%, 0.2%, 0.5%, 1%, 2%, and 

5%) was ground and 10 ml acetic acid was applied and left for 10 hours. Later, a homogenous 

colloidal solution containing MoS2--Fe2O3 in acetic acid was used to create films on quartz, 

silicon, and fluorine tin oxide (FTO) coated glass plates. The films were annealed at various 

temperatures (100, 200, 300, 400, and 500 oC) for one hour. The XRD, SEM, cyclic voltammetry, 

and UV-vis characterizations were performed in room temperature-cooled samples of MoS2--

Fe2O3 films. 

4.3 Physical Properties Studies 

4.3.1 UV-Visible Spectroscopy (UV-Vis) 

Figure 2 observes the UV-vis spectra of -Fe2O3, MoS2 and -Fe2O3-MoS2-prepared at a 

different ratio of MoS2 to -Fe2O3. An UV-Vis Spectrometer Jasco V-530 was used to measure the 

absorption spectra on various samples deposited on glass plates. Figure 2(a) shows the UV–vis 

absorption at approximately 550 nm for the pristine -Fe2O3, similar to that shown in literature. 

Figure 2(b) shows the characteristic absorption bands 388, 453, 618 and 679 nm for the MoS2 

nanomaterial film on glass plates.  Figure 2 (c-f) shows the UV-vis absorption spectra for MoS2 

doped in different percentages (0.1, 0, 2, 1 and 5%) with -Fe2O3 nanomaterial. Figure 2(c) shows 

the absorption bands at 282, 454, 463 nm. Figure 2(d) shows the absorption bands at 446 and 565 

nm. Distinct peaks can be seen at 382, 461 and 570 nm. Figure 2(e) displays the UV-vis band at 

382, 456 and 559nm whereas Figure 2(f) shows the absorption band at 382, 459 and 572 nm. There 

is a blue shift with an increase of MoS2 in α-Fe2O3 [117].  However, the band observed for 0.1% 
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MoS2 doping is shifted at 572 nm in 5% MoS2 doping in -Fe2O3 nanomaterial.  Such results are 

consistent with the results shown of transition composite metal ions [118]. The UV-vis spectra of 

the composite hematite have been estimated to be 2.17 eV for the band at 572 nm.  

 

Figure 4.2 UV-vis absorption spectra of MoS2 with -hematite nanocomposite 

4.3.2 X-Ray Diffraction (XRD)  

The crystalline structure of MoS2--Fe2O3 was investigated using Powder X-ray 

diffraction (XRD), model PANalytical X'Pert Pro MRD system, with Cu Kα radiation (wavelength 

= 1.5442 Å) operated at 40 kV and 40 mA. Figure 3 shows X-ray diffraction curves for several 

percentages of MoS2 (0.1%, 0.2%, 0.5%, 1%, 2%, and 5%) to -Fe2O3; -Fe2O has a 

polycrystalline structure as revealed from the XRD pattern. The diffraction common peaks in 

MoS2--Fe2O3 nanocomposite at different percentages of MoS2 displays bands at 31.2o, 33.2o, 

37.5o, 40.9o, 49.5o, 54.1o, 62.2o, and 64.2o. The diffraction angle peak has been indexed at (012), 

(104), (110), (113), (024), (116), (214), and (300) for crystal planes of hexagonal iron oxide [8]. It 
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is clear from sharp and strong diffraction peaks that -Fe2O3 is well crystallized in the synthesis 

process for all percentages of MoS2 in -Fe2O3 [119]. The peak at 54.1o is due to the presence of 

MoS2 in the MoS2--Fe2O3- structure.  

 

Figure 4.3 X-ray diffraction pattern of MoS2 with -hematite nanocomposite 

 

4.3.3 Fourier Transform Infrared Spectroscopy (FTIR) 

Perkin Elmer spectrum was utilized to study FTIR spectroscopy of various samples of 

MoS2--Fe2O3- nanocomposite. The MoS2--Fe2O3 nanocomposite was mixed with KBr, the 

pellets were made using the hydraulic press, and the samples were measured using the transmission 

mode from 400 to 4000 cm-1. FTIR spectra of MoS2--Fe2O3 shows the change of percentage of 

MoS2 doping with α-Fe2O3 with curve 1 to 5%, curve 2 to 0.2%, curve 3 to 2%, curve 4 to 1%, 

curve 5 to 0.5%, and curve 6 to 0.1% of MoS2 in MoS2--Fe2O3 as shown in Figure 4. The infrared 

bands of each MoS2 doping to -Fe2O3 are shown in Table 2. The infrared band at 3414 cm-1 is 

due to hydroxyl (OH) groups in -Fe2O3. The band at 1642 cm-1 results from  (OH) stretching. 

The Fe-O vibration band in Fe2O3 is because of 562 cm-1
. The band at  620-654 and 474-512  are 
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related to the lattice defects in Fe2O3 [81, 82]. The infrared band at 474-512 cm-1 is due to 

stretching vibration depicting the presence of MoS2 in the MoS2--Fe2O3 structure. The doping of 

0.1% to 5% of MoS2 shifts the infrared band from 512 cm-1 to 474 cm-1. The band at 474 cm-1 is 

the band observed for exfoliated MoS2 nanosheets revealing the maximum doping in MoS2--

Fe2O3 structure [120]. 

 

Figure 4.4 FTIR spectra of MoS2 with -hematite nanocomposite 

 

Table 4.2: Infrared bands of each MoS2 doping to -Fe2O3 

MoS2 Wavenumber (cm-1) 

5% 474, 562, 620, 1136, 1193, 1472, 1642, 2858, 2924, 3436 

2% 484, 562, 620, 1136, 1193, 1472, 1642, 2858, 2924, 3436 

1% 474, 570, 640, 1006, 1134, 1388, 1470, 1670, 2854, 2924, 3436 

0.5% 458, 554, 644, 802, 898, 1042, 1386, 1468, 1634, 2856, 2922, 3438 

0.1% 512, 522, 654, 802, 1114, 1396, 1434, 1666, 2836, 2952, 3448 
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4.3.4 Scanning Electron Microscopy (SEM)  

The scanning electron microscopy (SEM) of various MoS2--Fe2O3 samples were 

measured using FE-SEM, S-800, and Hitachi. Figure 5 shows SEM images of MoS2--Fe2O3 

nanomaterials which consisted of various percentages from 0.1 to 5 % MoS2 to Fe2O3 in MoS2--

Fe2O3. SEM images reveal that the morphology of MoS2--Fe2O3 resembles blooming flower-like 

nanoparticles. The blooming flower-like morphology is a result of doping MoS2 with -Fe2O3 

[121]. The images reveal that the size of the particle changes with the increase of MoS2 doping 

from 0.1% to 5% in MoS2--Fe2O3 nanomaterial. In addition, it is difficult to differentiate simple 

α-Fe2O3 nanoparticles from MoS2 nanosheets; this shows a strong interface formation between 

Fe2O3 and MoS2 in MoS2--Fe2O3 nanomaterial [122]. 

 

Figure 4.5 Scanning electron micrographs (SEM) of MoS2 with -hematite nanocomposite. The 

percentage of MoS2 with -hematite nanocomposite is shown in Figure 6. 
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4.3.5 Raman Spectroscopy 

The Raman spectrum has been studied to understand the rapid and nondestructive surface 

description of vibrational characteristic bonds of MoS2 to Fe2O3 in MoS2--Fe2O3 nanomaterial. 

Figure 6 shows the Raman spectra of MoS2--Fe2O3 film excited by a 532 nm laser [123]. The 

Raman shift at 532 cm-1 resonates with the electronic transition in ring structures for aromatic 

clustering processes in sp2 dominated particles. The shifts at 374 and 417 cm-1 are due to in-plane 

vibrational (E2g1) and the out-of-plane vibrational (A1g) modes. The enhanced MoS2 is indicative 

of energy difference between Raman shifts due to MoS2 content in MoS2--Fe2O3 nanomaterial. 

 

Figure 4.6 Raman spectra of MoS2--Fe2O3 film sample and ITO substrate with various 

percentages of MoS2 as shown in a and b 
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Figure 4.6 (Continued) 

 

4.3.6 Particle Analyzer 

The Zetasizer Nano particle analyzer range model was used to measure the average particle 

size of various MoS2--Fe2O3 samples. Initially, the MoS2--Fe2O3 nanomaterial was dispersed 

in water and ultra-sonicated to produce an aggregated free colloidal sample. Figure 7 shows the 

particle size of MoS2--Fe2O3 as a function of MoS2 doped in α-Fe2O3.  The average particle size 

in the liquid sample ranges from 459 nm (0.1%) to 825 nm for (5%) the dopant of MoS2 

respectively. Although these particles are small, there are few particles which are larger than five 

microns. The larger particles that can be detected through SEM measurement are a result of 

aggregation. The average particle size is important for the fabrication of the electrodes from the 

particles. This information of nanomaterial dispersion of MoS2--Fe2O3 can be exploited for 

electrode fabrication or other applications.  
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Figure 4.7 Particle size measurement of MoS2--Fe2O3 nanocomposite materials as a function of 

MoS2 dopant 

 

4.4 Electrochemical Studies 

4.4.1 Cyclic Voltammetry 

The electrochemical measurements on various MoS2--Fe2O3 electrodes were measured 

from an electrochemical workstation (Volta lab). The electrochemical setup was adopted similar 

to our earlier studies on hybrid films [84, 85]. Figure 8 shows the cyclic voltammetry (CV) of 1% 

MoS2--Fe2O3 on FTO coated glass plates as a working electrode with platinum (Pt) as a reference 

and Ag/AgCl as a reference electrode in a three electrode-based electrochemical cell in 1M NaOH. 

The continuous increase of CV current was observed with an increase in function of scan rate. The 

presence of MoS2 ions induces the electrochemical properties and 1.3V can be seen as the 

oxidation potential of water, which is less than the aluminum doped from our previous studies 

[30]. 
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Figure 4.8 Cyclic voltammetry of 1% MoS2 with -Fe2O3 nanocomposite without light in 1M 

NaOH in three electrodes with platinum as reference and Ag/AgCl as reference electrode. 

 

The CV is shown in Figure 9 with application of light simulated for solar radiation. 

However, with the scan rate of 100 mV/sec, a maximum photocurrent was absorbed for MoS2--

Fe2O3 film.  The diffusion coefficient was calculated by using peak current for a reversible cyclic 

voltammetry, given by the Randles-Sevcik equation (Eq. 2)[124]. 

IP = (2.69 x 10
5)n3/2ACD1/2ν1/2    Eq. 2 

where: 

n = number of electrons 

 A = electrode area (cm2) 

C = concentration (mole/cm3) 

D = diffusion coefficient (cm2/s)  

ν = potential scan rate (V/s) 

Ip=current. 

The diffusion coefficient has been calculated at 0.24 x10-16 cm2/s. 



www.manaraa.com

 

52 

 

 

Figure 4.9 Cyclic voltammetry of 1% MoS2 with -Fe2O3 nanocomposite with light in 1M 

NaOH in three electrodes with platinum as reference and Ag/AgCl as reference electrode. 

 

4.4.2 Chronoamperometry  

Figure 10 (a & b) shows the chronoamperometry study of two electrode cells consisting of 

MoS2--Fe2O3 film as working electrolyte and steel as the counter in various concentrations (0.01 

0.1, 1M) of NaOH-based electrolytes. The potential from -1000 mV to 1500 mV was applied, and 

the chronoamperometry photocurrent was studied. Figure 9 (a & b) shows the chronoamperometry 

photocurrent plot with t-1/2 for oxidation and reduction processes for MoS2--Fe2O3 film. The rise 

of photocurrent showed a linear relationship with t-1/2 due to the excitation of light. The current 

transient was different from the excitation of light. The diffusion-controlled photocurrent is 

calculated using the Cottrell equation in Equation 3 [125-127].  

𝑖 = [𝑛𝐹𝐴𝐷
1

2𝐶] /[𝜋t
1

2]     Eq. 3 
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where: 

n = the electron participating in the reaction 

F = the faraday constant 

 A = the area of the electrode 

i = the transient current 

D = the diffusion coefficient 

C = the concentration of the electrolyte 

The D has been estimated to be 1.057 x10-14 cm2/sec. 

 

Figure 4.10 Chronoamperometry photocurrent plot with t(s)-1/2 for oxidation and reduction 

processes for MoS2--Fe2O3 film 

 

4.4.3 Half-Sweep Potential 

Figure 11 shows the half sweep potential with and without light for both aluminum-

doped-Fe2O3 and MoS2--Fe2O3. Our previous study on aluminum doping has shown the 

photocurrent to be 35 A whereas the same type of electrode for MoS2--Fe2O3 showed the current 
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to be 180 A. A schottky-type current voltage is experienced for both aluminum-doped as well as 

MoS2--Fe2O3-based electrodes in photoelectrochemical cells.  

 

Figure 4.11 Half-sweep potential with and without light for Al--Fe2O3 and MoS2--Fe2O3 film 

with and without light exposure 

 

4.4.4 Schematic of MoS2--Fe2O3 Reaction Process  

A schematic was drawn to understand the effect of MoS2 with α-Fe2O3. Hydrogen 

production using MoS2--Fe2O3 photocatalysts in electrolytes containing 1 M NaOH is shown in 

a schematic in Figure 12. The band gap of MoS2 varies from 1.8-1.9 eV, whereas the band gap of 

α-Fe2O3 is 2.1 eV. The bandgap of MoS2--Fe2O3 was estimated in range of 1.94 to 2.40 eV based 

on UV-vis measurements, which is well within the region of visible light. MoS2 doping also 

increased the conductivity of the samples. The schematic in Figure 12 shows that the 

photogenerated electrons from the conduction band of MoS2 are transferred to the conduction band 

(CB) of α-Fe2O3 whereas holes from α-Fe2O3e are transferred to the valence band (VB) of MoS2. 

This enhances the photocatalytic activity of the MoS2 composite with α-Fe2O3 in MoS2--Fe2O3 

nanomaterial-based electrodes. 
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Figure 4.12 Schematic of hydrogen production using MoS2-composite -Fe2O3 photocatalyst in 

1 M NaOH 

 

4.5 Conclusion 

The synthesized MoS2--Fe2O3 observed the shift in the band gap to 2.17 eV with MoS2 

doping. There is a marked change in the band due to MoS2 doping in -Fe2O3. The increase of 

MoS2 dominated the structure as marked from SEM measurements. The structure of -Fe2O3 forms 

a rhombohedra structure. The photocurrent is clearly distinguishable with and without light 

irradiation to electrodes based on MoS2--Fe2O3 nanomaterial. The enhanced photocurrent is 

observed with MoS2 doping in MoS2--Fe2O3 nanomaterial. The MoS2--Fe2O3 nanomaterial thin 

film has the potential to produce hydrogen using a PEC water-splitting process that could have 

renewable energy applications.  Our future work is based on the use of MoS2--Fe2O3 as n-type in 

p-n photoelectrochemical studies for efficient water-splitting applications. 
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CHAPTER 5: P-N PHOTOELECTROCHEMICAL CELL PROPERTIES USING -

HEMATITE -MOLYBDENUM DISULFIDE AS N-ELECTRODE AND 

POLYHEXYLTHIOPHENE (RRPHTH) - NANODIAMOND (ND) AS P-ELECTRODE3 

5.1 Introduction 

State of the art research has shown that tuning the band gap of photocatalytic material 

makes it more effective in photoelectrochemical cells for water splitting applications [57, 68, 88-

91]. There are several semiconducting materials (example: Fe2O3, BiVO4, WO3 and Ta3N5) used 

in PEC cells with a lower band gap [90]. The -Fe2O3 material as an anode has been used in the 

photoelectrochemical cells resulting in a water-to-hydrogen conversion efficiency of 16% of solar 

radiations [90, 128-131]. Also, -Fe2O3 has a low bandgap (2.1–2.2 eV), low cost, high chemical 

stability, and nontoxic and abundant material for photoelectrochemical cells [69, 90, 102, 103, 

132-136]. However, -Fe2O3 has several drawbacks including shorter hole diffusion length, low 

conductivity, shorter lifetime of photoexcitation, and deprived reaction kinetics of oxygen 

evolution heralding better photo-conversion efficiency [26, 57, 137-139]. The performance of 

water splitting and photo-conversion has been enhanced by metallic doping such as Ti [100, 101], 

Mo [102], Al [74, 140], and Pt [47] and Si [103, 104]. Our earlier studies on Zn and Al doping in 

-Fe2O3 showed enhanced photoelectrochemical properties [141]. MoS2 is one of the most studied 

materials in recent years due to its classification as a 2D- dichalcogenide material having a  band 

                                                 
3 This chapter has been communicated as “p-n photoelectrochemical cell properties using -hematite -molybdenum 

disulfide as n-electrode and polyhexylthiophene (RRPHTh)-nanodiamond (ND) as p-electrode” in Elctrochimica 

Acta, Elsevier Journal, April 2018 
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gap of 1.8-1.9 eV [90]. The MoS2 has shown interesting photocatalytic activity because of its 

bonding, chemical composition, doping, and nanoparticle growth on countless matrix films [88, 

105, 108, 142]. MoS2 has applications in photocatalytic devices [11, 88], phototransistors [143-

146] and sensors [90, 147-149]. Moreover, MoS2 plays an important role as charge transfer with 

slow recombination of electron-hole pairs created due to photo-energy, and this relates to the 

charge transfer rate between surface and electrons generated in photo-conversion [116]. MoS2 has 

also been used as a p-type conductor in photoelectrochemical hydrogen production in PEC cells.  

Our earlier experiment using MoS2 particles has promoted the electron transport properties 

of α-Fe2O3 nanomaterial by doping and homogenous structure. The doping of MoS2 particles 

varied from 0.1%, 0.2%, 0.5%, 1%, 2% and 5% in α-Fe2O3 nanomaterial. The α-Fe2O3 and MoS2-

α-Fe2O3 nanomaterials were characterized using X-ray diffraction, SEM, FTIR, Raman 

spectroscopy, particle analysis and UV-vis spectroscopy, respectively. Cyclic voltammetry (CV) 

and impedance measurements were utilized to understand the electrochemical electrode and 

electrolyte interface and photoelectrochemical properties of MoS2-α-Fe2O3. Nano-hybrid 

RRPHTh with various dopants (TiO2, ZnO, and nanodiamond) has been used for 

photoelectrochemical applications in our group [150-152]. Ram et al. have used RRPHTh-

nanodiamond (ND) electrodes to provide high-sufficiency photoelectrochemical conversions 

superior to TiO2-RRPHTh and ZnO-RRPHTh nanohybrid film [153]. The use of MoS2-α-Fe2O3 

as the n-electrode and RRPHTh-ND as the p-electrode in liquid-based photoelectrochemical cells 

has been studied in PEC cells. MoS2-α-Fe2O3 as the counter electrode and RRPHTh-ND as the 

working electrode has been used to study photoelectrochemical cells. Cyclic voltammetry and 

chronoamperometry studies have been performed with visible light, radiation simulated for solar 
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radiation, as well as with 60 W lamps, to understand the photoelectrochemical properties of PEC 

cells. 

5.2 Experimental Details 

5.2.1 Materials 

The materials iron chloride (FeCl3), aluminum chloride (AlCl3), sodium hydroxide 

(NaOH), MoS2, poly(3-Hexylthiophene), and ammonium hydroxide (NH4OH) were purchased 

from Sigma-Aldrich. The fluorine tin oxide (FTO) coated glass, with resistance of ~10 Ω, was also 

procured from Sigma-Aldrich. The centrifuged containers were purchased to clean the synthesized 

nanomaterials from the solution.  

5.2.2 Synthesis of Nanomaterials  

The -Fe2O3 and MoS2-α-Fe2O3 were synthesized using the sol-gel technique. Various 

concentrations of FeCl3 with AlCl3 were prepared in 500 ml round bottom flasks. Table 1 shows 

the amount of chemicals used for the synthesis of MoS2--Fe2O3. Later, NaOH was added to the 

resulting solution and stirred with a magnet. A condenser was connected to the round bottom flask 

containing the chemicals then placed in a heater to maintain 90-100 oC for the chemical reaction. 

The reaction was terminated after 24 hours, and the solution was cooled at room temperature. The 

synthesized material was separated using a centrifuge and continuous cleaning with water. The 

synthesized materials MoS2--Fe2O3 were initially left drying at room temperature. The MoS2--

Fe2O3 was then dried at various temperatures (100, 200, 300, 400 and 500 oC). In each case, the 

temperature was maintained in a furnace for one hour. The materials were then brought to room 

temperature and collected in a tight bottle for photoelectrochemical cells and various physical 

characterization studies.  
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5.2.3 Film Formation of Substrate 

The MoS2--Fe2O3 was prepared at different concentrations by mixing it with acetic acid 

to obtain a homogenous solution to cast on various substrates. 500 mg of MoS2--Fe2O3 (0.1%, 

0.2%, 0.5%, 1%, 2% and 5%) was ground into a powder and then mixed into 10 ml acetic acid in 

a small container and left for 10 hours. Later, the solutions were used to make films on quartz, 

silicon and fluorine tin oxide (FTO). The films were cured at different temperatures (300, 400 and 

500 oC) for one hour. The films were then cooled to room temperature and used for XRD, SEM, 

cyclic voltammetry and UV-vis measurements.  

5.2.4 RRPHTH-ND/NaOH/MoS2--Fe2O3-Based Photoelectrochemical Cells 

The conducting polymer solution was made by dissolving 50 mg of RRPHTH in 50 ml of 

chloroform. Later, 50 mg of ND was added to the solution and kept suspended by stirring for 24 

hours, similar to the work of Ram et al. [151]. The RRPHTH-ND film was fabricated using spin 

coating, as well as by casting the solution on silicon and ITO coated glass substrates. The 

photoelectrochemical cell was constructed using silicon, as well as ITO coated RRPHTh-ND as a 

working electrode and MoS2-Fe2O3 as a counter electrode. The cyclic voltammetry (CV) as well 

as the chronoamperometry measurements were made using 0.1 M and 1M NaOH concentration. 

A schematic is drawn in Figure 1 to understand the effect of MoS2 with α-Fe2O3. Figure 1 shows 

the schematic of hydrogen production using the MoS2--Fe2O3 photocatalyst in 1 M NaOH based 

electrolyte in a PEC cell. 
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Figure 5.1 Schematic of hydrogen production using MoS2--Fe2O3 nanocomposite as n-type and 

RRPHTh-ND as p-type photocatalyst in 1 M NaOH 

 

5.3 Physical Properties Studies 

5.3.1 Scanning Electron Microscopy (SEM) 

The structure and surface properties of α-Fe2O3, MoS2-α-Fe2O3 and RRPHTh-ND films on 

silicon substrates were investigated through a Field Emission Hitachi S800 Scanning Electron 

Microscope (SEM) with an EDS attachment that worked at 25kV. Figure 2(a) shows the SEM 

image of α-Fe2O3 nanomaterial consisting of well-dispersed spheres with particle sizes of 100-300 

nm. The particle sizes increased in MoS2- α-Fe2O3 as shown in Figure 2(b). The films consisting 

of α-Fe2O3 and MoS2-α-Fe2O3 have uniform and dense spheres of particles. The ND hybrid with 

RRPHTh conducting polymer has particle sizes varying from 100 nm to 500 nm. The average size 

of nanoparticles of ND was kept at approximately 20 nm. The RRPHTh provides a nearly uniform 

covering over the ND particles forming the nano-hybrid structure. 
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Figure 5.2 Scanning electron micrographs (SEM) of (a) α-Fe2O3, (b) α-Fe2O3+0.1%MoS2, and 

(c) RRPHTh-ND. 

 

5.3.2 Fourier Transform Infrared Spectroscopy (FTIR) 

The infrared bands at 467 and 523 cm-1 are related to Fe-O stretching and bending vibration 

mode for α-Fe2O3 nanomaterial as shown in Figure 3(a). Figure 3(b) shows the FTIR spectra of α-

Fe2O3 + 0.1% MoS2. It shows IR bands at 1388 and 1407 cm-1 which are related to the stretching 

vibration as well as in-plane bending vibration of O-H of α-Fe2O3 nanomaterial [154]. Moreover, 

the IR bands at 544 and 1630 cm-1 are assigned to the OH− group which is in-plane bending 

vibration and  γas Mo-S vibration due to the presence of MoS2 [154]. However, the bands at 638, 

802, and 892 are generated because of out-of-plane bending vibration and γas Mo-O vibrations, 

which are related to the OH− group. In addition, Fe-O presence shows stretching vibration in α-

Fe2O3 + 0.1% MoS2 [154]. Figure 3(c) shows FTIR spectra of RRPHTh-ND; various bands are 

also presented in Table 1. The bands at 1739 cm-1 are the characteristic bands of nanodiamond, 
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while the presence of 1687, 1129 and 630 cm-1 are due to the presence of a functional group in the 

nanodiamond [151]. The RRPHTH characteristic peaks (413, 475, 514, 758, 800, 852, 1000, 1058, 

1092, 1260, 1300, 1390, 1446, 1497, 1635, 1687, and 1820) are shown in Figure 3(c), which can 

be well compared with the work of Ram et al. [151].  

Table 5.1: Infrared bands of each α-Fe2O3, 0.1%MoS2, and RRPHTh-ND. 

Material Infrared bands in cm-1 

α-Fe2O3 467, 523, 578, 796, 830, 872, 990, 1046, 1076, 1376, 1551, 1625, 1736, 1763 

0.1%MoS2 512, 522, 654, 802, 1114, 1396, 1434, 1666, 2836, 2952, 3448 

RRPHTh-ND 413, 475, 514, 630, 758, 800, 852, 1000, 1058, 1092, 1129, 1260, 1300, 1390, 

1446, 1497, 1635,1687, 1739, 1820, 2089, 3415, 

 

 

  

 

 

 

 

 

 

 

Figure 5.3 FTIR spectra of (a) α-Fe2O3, (b) α-Fe2O3+0.1%MoS2, and (c) RRPHTh-ND. 

 

5.3.3 X-Ray Diffraction (XRD)  

 The model PAN-alytical X’Pert Pro MRD system, operated at 40 kV and 40 mA, was used 

to measure X-ray diffraction having CuKα radiation of wavelength = 1.5442 Å. Figure 4(a) shows 
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an XRD image of α-Fe2O3 nanomaterial. The α-Fe2O3 nanomaterial reveals a polycrystalline 

structure and coincides with the values as earlier investigated by Hussein et al. [155]. Table 2 

shows the summary of diffraction angle 2theta angles [155]. Figure 4(b) shows the sharp 

diffraction angle of XRD spectra of α-Fe2O3 + 0.1% MoS2. The sharp diffraction angle peaks at 

31.69 (012), 36.62 (110), 45.46 (024), 53.23 (116), 58.93 (214) result from the crystallinity of 

Fe2O3 as well as the presence of doping of MoS2 in α-Fe2O3 + 0.1% MoS2 nanomaterial [26]. 

However, the band at 53.23 is related to MoS
2 in MoS

2
-α-Fe

2
O

3
 nanomaterial.  

Table 5.2: X-ray diffraction peaks of each α-Fe
2
O

3, α-Fe2O3+0.1%MoS
2
 

α-Fe2O3 30.41, 32.11, 33.87, 39.83, 44.68, 45.54, 47.76, 63.89, 66.16, 72.96, 76 

α-Fe2O3+0.1%MoS2 31.69, 36.62, 45.46, 53.23,58.93 

 

 

Figure 5.4 X-ray diffraction pattern of (a) α-Fe2O3, and (b) α-Fe2O3+0.1%MoS2. 

 

5.3.4 UV-Visible Spectroscope (UV-Vis) 

 An UV-Vis spectrometer Jasco V-530 was utilized to determine the absorption peaks of 

various nanomaterials such as α-Fe2O3, α-Fe2O3+0.1% MoS2, and RRPHTh-ND. Figure 5(a) 

shows the UV-vis absorption spectra of α-Fe2O3 film on ITO coated glass plates. The absorption 
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band at 550 nm was depicted as similar to the previous study by Hussein et al [140]. The 

characteristic absorption bands at 373, 382, 406, 442, 475, 612 nm of α-Fe2O3-0.1% MoS2 were 

observed in Figure 4(b). Figure 4(c) reveals the characteristics bands at 412, 475, 503,588, 695, 

834 nm for ND-RRPHTH based film similar to the previous work by Ram et al. [155]. The band 

gap of MoS2 varies from 1.8 to 1.9 eV, whereas the bandgap of α-Fe2O3 is 2.1 eV. So, we have 

estimated the bandgap of MoS2--Fe2O3 in the range of 1.94 to 2.4 eV, which fits well in the region 

of visible light. MoS2 doping increases the conductivity of the samples.  The schematic in Figure 

10 shows photogenerated electrons from the conduction band (CB) of MoS2 that is transferred to 

CB of hematite, whereas holes from hematite are transferred to valance band (VB) of MoS2. This 

doping enhances the photocatalytic activity of the MoS2 composite with α-Fe2O3.  

Table 5.3: UV–vis absorption peaks of each α-Fe
2
O

3, α-Fe2O3+0.1%MoS
2
, and RRPHTh-ND 

Fe2O3 286, 346, 371, 470,580 

0.1%MoS
2
 373, 382, 406, 442, 475, 612 

RRPHTh-ND 412, 475, 503,588, 695, 834 

 

 

Figure 5.5 UV-vis absorption spectra of (a) α-Fe2O3, (b) α-Fe2O3+0.1%MoS2, and                       

(c) RRPHTh-ND. 
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5.4 Electrochemical Studies 

5.4.1 Schematic of P-N Configuration-Based Reaction Process  

The MoS2-α-Fe2O3 as the n-electrode and RRPHTh-ND as the p-electrode in a liquid 

electrolyte (1M NaOH, HCl etc.) was studied in photoelectrochemical cells. The cyclic 

voltammetry (CV) and the chronoamperometry were analyzed extensively on the p-n 

configuration-based photoelectrochemical cell with and without light. Figure 6 shows the water 

splitting application in RRPHTH-ND as the p-type and MoS2-Fe2O3 as the n-type in 1M NaOH 

water-based electrolyte photoelectrochemical cell under a photoexcitation and applied electrical 

potential. The NaOH was used as an electrolyte in the photoelectrochemical cell. The cyclic 

voltammetry as well as the chronoamperometry measurements were made using 0.1 M and 1M 

concentrations of NaOH-based electrolytes. 

 

Figure 5.6 Schematic of water-splitting application in p-type RRPHTH-ND and n-type MoS2-

Fe2O3 in water-based electrolyte photoelectrochemical cell under photoexcitation and under 

potential 
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Attempts were made to understand the water splitting using the work function and band 

gap of the material. The MoS2 doped α-Fe2O3 in water has a band gap varying from 2.17 to 1.94 

eV. The hydrogen gas was formed at the electrode of RRPHTH-ND whereas oxygen was liberated 

at the MoS2- α-Fe2O3 based electrode.  

5.4.2 Cyclic Voltammetry  

Figure 7 shows the cyclic voltammetry curves with and without light for MoS2--Fe2O3 

and RRPHTh-ND based electrodes in 0.1M NaOH solution.  The CV curves show nearly twice 

the value of photocurrent than without light. However, at light under 2V, exposition of the 

photocurrent is shown, which is a 30 times greater varying current for n type-based electrode 

containing 1% MoS2 -α-Fe2O3 in p-type RRPHTh-ND containing 1M NaOH electrolyte. 

 

Figure 5.7 Cyclic voltammetry study of p-type RRPHTH-ND and n-type MoS2-Fe2O3 in NaOH 

1M-based electrolyte in photoelectrochemical cell with and without light 
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5.4.3 Chronoamperometry  

Figure 8 below shows the chronoamperometry curves of MoS2--Fe2O3 and RRPHTh-ND 

in 0.1 M NaOH solution. A light bulb of 60 W was exposed and the immediate current in the 

device increased significantly for 0.1% MoS2--Fe2O3 as the n-type and RRPHTh-ND as the p-

type electrodes in a cell containing 0.1M NaOH electrolytes. The photocurrent is observed with 

the cell’s exposure to light. However, the transient current is immediately observed due to the 

combination of electron and hole-pair, and the photocurrent decreases 0.1% in the MoS2--Fe2O3 

as the n-type and RRPHTh-ND as the p-type electrode-based electrodes in photoelectrochemical 

cells.  

 

Figure 5.8 Current-transient study of p-type RRPHTH-ND and n-type 0.1% MoS2--Fe2O3-

based electrodes in 1M NaOH-based electrolyte in photoelectrochemical cell with and without 

light 

 

Figure 9 shows chronoamperometry results of 0.1, 0.2, 1, and 5% of MoS2 in -Fe2O3 

MoS2 as n-type electrode and RRPHTh-ND as p-type electrode in a cell containing 0.1M NaOH 
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electrolyte. The current density was found to be highest for 1% MoS2--Fe2O3 as n-type electrode 

with RRPHTh-ND as p-type electrode in a cell containing 0.1M NaOH electrolyte. There is a 

current transient, but it becomes a stable photocurrent after 2-3 seconds, whereas there is continual 

decrease of photocurrent in 0.1 and 0.2 % of MoS2 in -Fe2O3 nanocomposite material. However, 

5% of MoS2 in -Fe2O3 nanocomposite material does not reveal a higher photocurrent due to 

aggregation of MoS2 in -Fe2O3 nanomaterial. 

 

Figure 5.9 Current-transient study of photoelectrochemical cell containing RRPHTh-ND as p-

type electrode and 0.1, 0.2, 1, and 5% of MoS2 in MoS2--Fe2O3 as n-type electrode in 1M 

NaOH-based electrolyte with light switch on and off at applied potential of 1500 mV 

 

Figure 10 shows chronoamperometry results of 0.1, 0.2, 1, and 5% of MoS2 in -Fe2O3 

MoS2 as n-type electrode and RRPHTh-ND as p-type electrode in a cell containing 0.1M NaOH 

electrolyte at a potential of 2000 mV.  The current density has been found to be highest for 0.1 and 

1% MoS2--Fe2O3 based n-type based electrode. There is a larger current transient for 0.1% MoS2 

in MoS2--Fe2O3 nanocomposite material. However, stable photocurrent after 2-3 seconds is also 
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observed for 1% of MoS2 in MoS2--Fe2O3 nanocomposite nanomaterial film. The 

chronoamperometry results reveal that 1% MoS2 in MoS2--Fe2O3 nanocomposite is a suitable 

structure to obtain higher photocurrent density.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Current-transient study of photoelectrochemical cell containing RRPHTh-ND as p-

type electrode and 0.1, 0.2, 1, and 5% of MoS2 in MoS2--Fe2O3 as n-type electrode in 1M 

NaOH- based electrolyte 

 

5.5 Conclusion 

From this chapter, it is clear that the water-splitting process is renewable and clean in 

generating hydrogen. To measure the photoelectrochemical properties of this process, the MoS2 -

-Fe2O3 electrodes were synthesized. The films, consisting of α-Fe2O3 as well as MoS2-α-Fe2O3, 

have a uniform and dense sphere of particles. The 1% MoS2-α-Fe2O3 film showed the most stable 

photocurrent. From the XRD figure, the band at 53.23 is related to MoS
2 in MoS

2
-α-Fe

2
O

3
 

nanomaterial. The photoelectrochemical photocurrent was found to be dependent on the applied 

potential from 0 to 2V in an electrolyte of varying molar concentration of NaOH. The 
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chronoamperometry results showed that 1% MoS2 in MoS2--Fe2O3 nanocomposite can be a 

suitable structure for obtaining a higher photocurrent density. The p-n configuration is a stable 

photoelectrochemical cell and allows for eliminating the photo corrosion process. Also, this p-n 

configuration prevents the leakage of solvent and has low absorption of light due to the thin layer 

of electrolytes. It is a renewable and affordable process to produce clean energy in the form of 

hydrogen. PEC with 1% MoS2--Fe2O3 nanocomposite has the potential to revolutionize full-cell 

technology. 
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CHAPTER 6: P-N BASED PHOTOELECTROCHEMICAL DEVICE FOR WATER-

SPLITTING APPLICATION OF ALPHA-HEMATITE (α-Fe2O3)-TITANIUM DIOXIDE 

(TiO2) AS N-ELECTRODE & POLYHEXYLTHIOPHENE (RRPHTH) - 

NANODIAMOND (ND) AS P-ELECTRODE4 

6.1 Introduction 

Great attention has been paid to the production of hydrogen as an alternative energy by the 

photoelectrochemical (PEC) water-splitting process [156, 157]. The transition metal oxide 

semiconductors have been used as a photocatalyst for water PEC-based splitting applications [91, 

158-160]. Among materials, α-Fe2O3 is one of the more extensively explored materials and has 

advantages for production of hydrogen in the PEC process including chemical suitability for 

electrolytes (PH > 3), relatively narrow bandgap (2.0 - 2.2eV), abundance, and inexpensive cost 

[161-163]. Due to the short electron-hole pair time (<10 ps) and hole diffusion length (2-4 nm), 

which cause a high recombination rate of photo-generated carriers in the bulk. Hematite-based 

water splitting has lower efficiency than that of the theoretical (12.6 mA/cm2) and has restricted 

PEC applications [68, 164]. In addition, the oxidation reduction seems to delay on the surface of 

hematite-based water splitting due to the kinetics of the interfacial extraction of the hole, and might 

be accompanied by an increased charge recombination and the decline of efficiency [164, 165]. 

                                                 
4 This chapter has been published “Hussein Alrobei, H.Y.L., Ashok Kumar, and Manoj K. Ram, p-n Based 

Photoelectrochemical Device for Water Splitting Application Alpha-Hematite (α-Fe2O3)-Titanium Dioxide (TiO2) 

as N-Electrode & Polyhexylthiophene (RRPHTh) – Nanodiamond (ND) as P-Electrode. MRS Advances, 2017.” 

and copyright permission in appendix A.3 
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To improve photoelectrochemical properties, TiO2 has been investigated because of the low cost 

for the fabrication of photoelectrochemical stability [166, 167]. However, TiO2 also has significant 

limitations. Firstly, excitation is generated in response to UV regions. Secondly, the PEC device, 

has been fabricated with TiO2, which often has a short diffusion length of excitation [161, 168, 

169]. To solve the above limitations, some suggestions are made for reducing band gap that allow 

the PEC device to absorb the visible region and create a large contact area with the electrolyte, 

allowing the PEC device to split electron-hole pairs [161, 168, 170]. In gathering advantages of 

both metal oxide materials, TiO2 with Fe2O3 film was shown to increase contact area with 

electrolytes, reducing e-h recombination and shifting light absorption along with visible region 

[164, 171, 172]. 

However, the properties of alpha-hematite photoanode were changed when doped with 

various concentrations of TiO2. Under this work, the sol-gel technique was used to synthesis -

Fe2O3-TiO2 nanomaterials with different concentrations (50%, 25%, 16%, 5% and 2.5% of TiO2) 

and were dried at 300 °C and 500°C, respectively. The physical properties of -Fe2O3-TiO2 

nanomaterials were investigated by using SEM, XRD, UV-Vis, FTIR and Raman measurements. 

The photoelectrochemical properties were also examined by using the chronoamperometry 

technique. 

6.2 Experimental Details  

6.2.1 Materials  

Iron chloride (FeCl3), titanium (IV)-isopropoxide solution (TTIP), and sodium hydroxide 

(NaOH) were used to synthesize the -Fe2O3-TiO2 nanomaterials. Potassium bromide (KBr, 

Aldrich), which was purchased from the Sigma-Aldrich company, was used for making FTIR 

sample pellets. The synthesized materials were mixed with acrylic acid to fabricate the film. To 
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measure electrochemical properties, α-Fe2O3-TiO2 materials were coated on indium tin oxide 

(ITO) glass, which operated as working electrode. Polyhexylthiophene (RRPHTh)-nanodiamond 

(ND) materials were coated on silicon wafers which worked as a counter electrode.  

6.2.2 Synthesis of Nanomaterial 

The α-Fe2O3-TiO2 nanomaterials were synthesized by sol-gel. Equation 1 shows the 

chemical reaction equation. The synthesized α-Fe2O3-TiO2 nanomaterials were obtained by 

changing various concentrations of reactant materials, which were FeCl3 and TTIP. To obtain 

different concentrations of TiO2 (50%, 25%, 16%, 5% and 2.5%), the amount of FeCl3 and TTIP 

were put into the round bottom flask with DI water (450 ml), respectively. To dissolve the above 

materials, the resulting solution was stirred with a magnetic stir bar, and the flask was put on the 

hotplate at 60 °C for one hour. Afterwards, the NaOH solution (50mL) was added to the resulting 

solution and connected to a reflux condenser. Reaction temperature was maintained at 90 °C for 

the chemical reaction, and reaction time was maintained for 24 hours. Filter paper was utilized to 

separate the solution and to extract α-Fe2O3-TiO2 nanomaterial from residues. The α-Fe2O3-TiO2 

nanomaterial was washed using DI water twice to remove the impurities. The α-Fe2O3-TiO2 

nanomaterial was dried at 300 °C and 500 °C for two hours each. Then, dried α-Fe2O3-TiO2 

nanomaterial was further grounded using a ball-milling machine. TiO2 nanomaterial was 

fabricated with 0.05M of TTIP, and subsequently dried at 500 °C for three hours using similar 

conditions of the α-Fe2O3-TiO2 nanomaterial synthesis process. 

4𝐹𝑒𝐶𝑙3 + 𝑇𝑖{𝑂𝐶𝐻(𝐶𝐻3)2}4 + 5𝑁𝑎𝑂𝐻
𝑎𝑡 90°𝐶 𝑓𝑜𝑟 24 ℎ𝑜𝑢𝑟𝑠 & 𝑑𝑟𝑦𝑖𝑛𝑔 
→                       2(2𝑇𝑖𝑂2 − 𝐹𝑒2𝑂3) + 𝛼 (𝑒𝑞1) 

6.2.3 Film Formation of Substrate 

The α-Fe2O3-TiO2 nanomaterial and KBr powder were mixed and applied via hydraulic 

press for obtaining the pellets. The α-Fe2O3 and TiO2 pellets were prepared for comparative 
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analysis. To fabricate film-type specimens, the α-Fe2O3-TiO2 nanomaterial was mixed with a small 

amount of acetic acid for obtaining the colloidal materials. The colloidal α-Fe2O3-TiO2 materials 

were used to coat ITO glasses (2cm ×2.5cm) and were cured at 100 °C for one hour. The counter 

electrode was fabricated by immersing pieces of Si-wafer in RRPHTh-ND colloidal solution [112]. 

6.3 Physical Properties Studies 

The X-ray diffraction (XRD), SEM, and Raman spectroscopy were performed using 

powder from the samples. For electrochemical properties, a Potentiostat/Galvanostat instrument 

(Radiometer Analytical, Volta lab 40 PGZ301) was utilized. To measure cyclic voltammetry and 

chronoamperometry properties, the working electrode (α-Fe2O3-TiO2/ITO) and the counter 

electrode (RRPHTh-ND/Si) were immersed in NaOH (0.1M) solution as electrolytes and 

connected to the equipment using clips.  

6.3.1 UV-Visible Spectroscopy (UV-Vis) 

The UV-Vis characterizations of α-Fe2O3-TiO2 nanomaterial film on glass substrates were 

measured using a UV-visible spectrophotometer (Jasco- V-670 absorption spectrometer). Figure 

1 and Figure 2 show UV-Vis spectra of TiO2, α-Fe2O3 and α-Fe2O3-TiO2 that were prepared at 

various concentrations of TiO2 to α-Fe2O3 and dried at 300 °C and 500°C, respectively. The 

absorption spectra were obtained from the UV-Vis spectroscopy by measuring the sample holder 

that contained the powdered sample dissolved in DI water. Table 1 and 2 list the absorption peaks 

of all samples. For comparison, the α-Fe2O3 nanomaterial exhibits absorption of approximately 

300 nm in the UV region and broad weak absorption at 400-600 nm in the visible region. For the 

TiO2 nanomaterials, two absorption bands in the UV regions at 237 nm and 327nm are observed. 

In addition, there are also few very weak absorption bands at 428 nm and 488nm in the visible 

region (Figure 1 and 2). Figure 1 (b-f) shows the UV-Vis absorption bands for five different 
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concentrations of TiO2 (2.5%, 5%, 16%, 25% and 50%) to α-Fe2O3 nanomaterials that were dried 

at 300 °C. Figure 2(b-f) shows the absorption band for α-Fe2O3-TiO2 nanomaterials dried at 500 

°C with the same conditions. From Figure 1 and Figure 2, drying temperature appears to have 

insignificant influence on absorption bands of the material. For high concentrations of TiO2 (16, 

25, and 50%) samples, the absorption bands are similar to that of the TiO2 sample. Thus, absorption 

bands exhibit the characteristics of TiO2 nanomaterial. For the low concentrations ofTiO2 (5 and 

2.5%) samples, the absorption bands appear for the α-Fe2O3-TiO2 nanomaterials, which are 

different spectra than the Fe2O3 and TiO2 samples. The absorption bands at 238, 270, and 320 nm 

begin to appear in the UV region. In addition, strong absorptions appear near 428 and 540 nm in 

the visible region. Thus, α-Fe2O3-TiO2 nanomaterial with a small quantity of TiO2 seems to be 

red-shifted due to the TiO2 nanomaterials showing improvement in absorption in the range of 400-

600 nm [173, 174].  

Table 6.1: Peaks of each α-Fe2O3-TiO2 nanomaterial dried at 300℃ 

 Wavelength (cm-1) 

TiO2 237, 327, 428, 488 

α-Fe2O3-(50%)TiO2 236, 397, 438, 524, 607 

α-Fe2O3-(25%)TiO2 238, 321, 386, 532 

α-Fe2O3-(16%)TiO2 236, 453, 561 

α-Fe2O3-(5%)TiO2 279, 325, 428,534 

α-Fe2O3-(2.5%)TiO2 216, 236, 264, 329, 432, 537 

α-Fe2O3 299, 364, 488, 537 
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Table 6.2: Peaks of each α-Fe2O3-TiO2 nanomaterial dried at 500℃ 
 Wavelength (cm-1) 

TiO2 237, 327, 428, 488 

α-Fe2O3-(50%)TiO2 235, 334, 338, 526 

α-Fe2O3-(25%)TiO2 236, 404, 432, 522 

α-Fe2O3-(16%)TiO2 236, 335, 456,560 

α-Fe2O3-(5%)TiO2 230, 271, 329,426, 544 

α-Fe2O3-(2.5%)TiO2 218, 239, 268, 322, 428, 544 

α-Fe2O3 299, 364, 488, 537 

 

 

Figure 6.1 UV-vis absorption spectra of α-Fe2O3-TiO2 nanomaterials dried at 300℃ 
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Figure 6.2 UV-vis absorption spectra of α-Fe2O3-TiO2 nanomaterials dried at 500℃ 

 

6.3.2 Fourier Transform Infrared Spectroscopy (FTIR) 

The FTIR measurement of nanomaterials was made using KBr pellets in transmission 

mode using the FTIR spectrophotometer (Perkin-Elmer spectrum one). The data was obtained after 

averaging 16 scans for each sample recorded from 400 to 2000 cm-1. Figure 3 shows the α-Fe2O3, 

TiO2, and α-Fe2O3-TiO2 nanomaterials with various concentrations of TiO2 (50, 25, 16, 5 and 

2.5%) at 500 °C of drying. The samples were measured using transmission mode from 400 to 2000 

cm-1. The infrared bands of all samples are shown in Table 3. The weak band near 1630 cm-1 is 

relevant to the H-O-H bending vibration mode, since moisture on the surface of the sample is 
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adsorbed [175]. The TiO2 samples show broad bands in range of 400 to 700 cm-1, which are 

ascribed to the stretching vibration of Ti-O-Ti and Ti-O bridge bond [175, 176]. On the other hand, 

the α-Fe2O3 sample exhibits the broad band at 580 cm-1, which is ascribed to the Fe-O(metal-

oxygen) stretching-mode [177]. For the α-Fe2O3-TiO2 nanomaterial, infrared bands at 460 and 560 

cm-1 become stronger as the concentration of TiO2 is lowered. Both infrared bands at 460 and 560 

cm-1 appear to correspond to the α-Fe2O3-TiO2 nanomaterial lattice. 

Table 6.3: Infrared bands of each α-Fe2O3-TiO2  

 Wavelength (cm-1) 

TiO2 583, 651, 713, 767, 898, 1452, 1624, 1751 

α-Fe2O3-(50%)TiO2 442, 483, 588, 720, 950, 1354, 1451, 1541, 1620 

α-Fe2O3-(25%)TiO2 473, 582, 859, 942, 1070, 1346, 1452, 1542, 1617 

α-Fe2O3-(16%)TiO2 469, 554, 856, 932, 1066, 1346, 1449, 1622, 1726 

α-Fe2O3-(5%)TiO2 454, 540, 932, 1064, 1184, 1341, 1521, 1615 

α-Fe2O3-(2.5%)TiO2 456, 542, 928, 1064, 1170, 1346, 1527, 1629 

α-Fe2O3 454, 501, 561, 582, 825, 1041, 1373, 1621, 1757 
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Figure 6.3 FTIR spectra of α-Fe2O3-TiO2 nanomaterials 

 

6.3.3 Raman Spectroscopy  

Figure 4 shows the Raman spectra of the Fe2O3, TiO2, and α-Fe2O3-TiO2 nanomaterials 

with different concentrations of TiO2 (50, 5, and 2.5%) with heat treatment at 500 °C. Table 4 

indicates the Raman peak of all samples. The α-Fe2O3 sample exhibits peaks of 225, 295, 409 cm-

, which are assigned to hematite. Namely, the lines at 225 cm-1 are assigned to the A1g vibration 

mode and 296 and 409 cm-1 are assigned to the Eg vibration mode [178, 179]. The TiO2 samples 

show 205, 275, 434, 633 and 823 cm-1. The TiO2 sample includes both anatase and rutile phases: 

Raman shifts near 205 and 633 cm-1 for anatase phase, and nearby 434 and 823 cm-1 for rutile 

[180-182]. 
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Table 6.4: Peaks of each α-Fe2O3-TiO2  

 Wavelength (cm-1) 

TiO2 205, 275, 434, 633, 823 

α-Fe2O3-(50%)TiO2 215, 278, 375, 717, 978 

α-Fe2O3-(5%)TiO2 232, 288, 406,628, 664, 819, 975 

α-Fe2O3-(2.5%)TiO2 225, 243, 299, 406, 614, 664, 819, 975 

α-Fe2O3 225, 295, 409, 712, 824, 970 

 

 

Figure 6.4 Raman spectra of α-Fe2O3-TiO2 nanomaterials 
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6.3.4 Scanning Electron Microscopy (SEM) 

The SEM pictures of nanomaterials were measured using a Field Emission Hitachi S800 

Scanning Electron Microscope. Figure 5 shows the scanning electron microscopy (SEM) images 

of Fe2O3, TiO2 and α-Fe2O3-TiO2 with different concentrations of TiO2 (50, 5 and 2.5 %) samples. 

Figure 5 (a-b) shows SEM images of synthesized TiO2 and α-Fe2O3 nanomaterial samples 

respectively, with an average diameter of particles at less than 10 μm. On the other hand, Figure 5 

(c-e) shows SEM images of α-Fe2O3-TiO2 with different concentrations of TiO2 (50, 5 and 2.5 %) 

nanomaterials. Figure 5 (d-f) shows the urchin-like nanostructure consisting of nanowires e, thus 

the average particle size is over 10 μm. The urchin-like nanostructure includes more surface area, 

which may improve the effective interface of α-Fe2O3 and improve performance of the water-

splitting application [172, 179, 183]. 

 

Figure 6.5 SEM images of (a) α-Fe2O3 (b) TiO2 (c) α-Fe2O3 + 50%TiO2 (d) α-Fe2O3 + 5%TiO2 

(e) α-Fe2O3 + 2.5%TiO2 dried at 500 ℃ 
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6.4 Electrochemical Studies 

6.4.1 Chronoamperometry  

The electrochemical studies on various α-Fe2O3-TiO2 nanomaterial films were conducted 

using Potentiostat/galvanostate of model “PGZ 301 Dynamic EIS voltammetry” from Volta lab. 

The chronoamperometry curve was measured using two electrodes consisting of α-Fe2O3-TiO2 

nanomaterial (50% of TiO2 dried at 500 °C) film as the working electrode and RRPHTh-ND as 

the counter electrode. 1M of NaOH solution was utilized as the electrolyte. The electrochemical 

photo response was measured by switching the lamp on and off (60W). Figure 6 shows the 

chronoamperometry photocurrent curve with time (seconds) for oxidation-reduction reaction of α-

Fe2O3-TiO2 film. When charge potential was at 1000 mV, current density was 120µm/cm2 of the 

maximum and 90µm/cm2 of average as shown in Figure 6 (a); when charge potential was at 2000 

mV, current density was 800 µm/cm2 of the maximum and 300 µm/cm2 of average as shown in 

Figure 6 (b). The increase of potential shows the larger current density due to the oxidation of 

water. 

 

Figure 6.6 Photocurrent response for α-Fe2O3-TiO2 nanomaterial sample with 50% of TiO2, heat 

treatment at 500 ℃. (a) working electrode applied with 1000 mV of charge potential, (b) applied 

with 2000 mV of charge potential 
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6.5 Conclusion  

The α-Fe2O3-TiO2 nanomaterial was synthesized with various percentages of TiO2. The α-

Fe2O3-TiO2 nanomaterial can absorb the visible region. The low concentration of TiO2 (5% and 

2.5%) nanomaterial may be concerned with changing the structure of α-Fe2O3 nanomaterials based 

on SEM images. The urchin- nanostructure improves the effective interface of α-Fe2O3 and also 

enhances the performance of the water-splitting application. The TiO2 sample in α-Fe2O3-TiO2 

nanomaterial shows the presence of both phases such as anatase and rutile.  In addition, production 

of photocurrent seems to improve with illumination of the electrode based on α-Fe2O3-TiO2 

nanomaterial. TiO2 nanomaterial contributes to improving the performance of a PEC device based 

on α-Fe2O3-TiO2 nanomaterial electrode by shifting the absorbing region of light and by expanding 

the contact area with electrolytes on the α-Fe2O3-TiO2 surface. The increase of potential shows the 

larger current density due to oxidation of water using α-Fe2O3-TiO2 nanomaterial film.  
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CHAPTER 7: CONCLUSION   

The most efficient free resources that can generate sustainable energy are sunlight and 

water. The processes being developed using solar energy as the power source to energize the 

splitting of water to produce hydrogen gas are very promising in their potential for completely 

replacing fossil fuels as the world’s primary source of energy Photomaterials have been tested 

successfully to be used in photoelectrochemical cells for water-splitting applications. Alpha-

hematite is a promising photomaterial with a low bandgap of 2.1 eV and it can absorb visible light. 

Doping alpha-hematite material with aluminum, molybdenum disulfide, and titanium dioxide 

showed more changes in the structure, morphology, and particle size compared to pristine alpha-

hematite. 

Alpha-hematite material properties are enhanced by doping with aluminum in various 

percentages (0.5, 10, 20, 30), and the bandgap was varied from 2.1 to 2.4 eV. Also, the charge 

transport properties were improved through the strain introduction in the lattice structure, thus 

increasing the light absorption. The increase of Al contents in -Fe2O3 shows clustering due to the 

denser formation of the Al--Fe2O3 particle. The 20% Al doped α-Fe2O3 has blue shift that absorbs 

visible light and contains a marked increase in the photocurrent (35 µA/cm2). 

 The MoS2--Fe2O3 nanocomposite has changed the morphology of -Fe2O3 to resemble 

blooming flowers. The MoS2 could play a central role in charge transfer with slow recombination 

of electron-hole pairs created due to photo-energy with a charge transfer rate between surface and 

electrons. The chronoamperometry was used to estimate the photocurrent; the enhanced 
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photocurrent is observed with MoS2 doping in MoS2--Fe2O3 nanomaterial (180 µA/cm2) and is 

more effective than the Al--Fe2O3 nanocomposite.  

MoS2 can easily extract the holes from an n-type semiconductor by fabricating a p-n 

configuration. Alpha-hematite material has been enhanced by using the p-n configuration and 

provides high efficiency photoelectrochemical conversions. The p-n photoelectrochemical cell is 

stable and allows for eliminating the photo corrosion process. The chronoamperometry results 

showed that 1% MoS2 in MoS2--Fe2O3 nanocomposite can be a suitable structure to obtain a 

higher photocurrent density (450 µA/cm2). 
The TiO2 with p-n configuration contributes to improving the performance of the PEC 

device based on α-Fe2O3-TiO2 nanomaterial as the n-electrode and RRPHTh-ND as the p-electrode 

by shifting the absorption region of light and by expanding the contact area with electrolytes on 

the α-Fe2O3-TiO2 surface. The increasing potential shows the larger current density (800 µA/cm2) 

due to oxidation of water using α-Fe2O3-TiO2 nanomaterial film. 

7.1 Future Work 

 Exploration of more dichalcogenide materials that consider to be highly semiconducting 

materials, such as WS2, MoTe2, and MoSe2 for doping and composite to alpha- hematite 

for photoelectrochemical applications. 

 Integration of photovoltaic cells with photoelectrochemical properties of alpha–hematite 

materials to obtain a free solar current. 

 Exploration of p-n configuration-based photochemical properties by using a nanodiamond-

conducting polymer that easily obtains p-type semiconductor materials such as 

polymethythiophene, polyethylenedioxythiophene, and polycarbazole. 
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 MoO2 synthesis through hydrothermal technique is equal to or better than TiO2 

photocatalytic cells, as proven by the recent work from our group 
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